THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2012 Oct.; 23(10), 1204 1211. http://dx.doi.org/10.5515/kjkiees.2012.23.10.1204 ISSN 1226-3133 (Print) 능동전파반사기를이용한위성 SAR 시스템방사패턴분석 Analysis of the Radiation Patterns of Satellite SAR System with Active-Transponder 황지환 권순구 오이석 Ji-Hwan Hwang Soon-Koo Kweon Yisok Oh 요약 본연구에서는위성 SAR(Synthetic Aperture Radar) 시스템검 보정을위한기반기술습득을위해수행된 X- 밴드대역능동전파반사기를이용한실제위성 SAR 방사패턴측정및분석에관한연구결과를선보인다. 실험에사용된자체설계 / 제작된능동전파반사기는최대 63.1 dbsm 의레이더단면적 (RCS: Radar Cross Section) 을가지며, 외부수신장치를이용한수신기능을포함한다. 위성 SAR 시스템의방사패턴측정정확도를높이기위해동일한운용모드의위성 SAR(COSMO-SkyMed 2/3 호, hh- 편파, strip-map himage mode, 해상도 3 m) 시스템을이용하였으며, 이때, SAR 영상데이터내능동전파반사기의 RCS 크기분석을병행하여측정결과의신뢰도를교차분석하였다. 수신된신호로부터추출된위성 SAR 시스템의방위각방향방사패턴특성은각각 HP- BW(half- power beamwidth) 0.352, FNBW(first-null beamwidth) 0.691, PSLR(peak to side lobe ratio) 11.17 db 이다. Abstract Measurement and analysis results of the extracted radiation-patterns from the field-experiments which were conducted to acquire the generic technology for calibration and validation of the satellite SAR system(synthetic Aperture Radar) are presented in this study. Prototype of active transponder is adjustable within maximum 63.1 dbsm of RCS (Radar Cross Section) and includes the receiving-function with external receiver. To increase an accuracy of these field experiments, we repetitively measured satellite SAR systems of the same operating mode(i.e., COSMO-SkyMed No. 2 & 3, hh-pol., strip-map himage mode, 3 m resolution). Then, the reliability of experimental results was cross-checked through analysis of the RCS of active transponder on SAR image. The property of azimuth radiation patterns of satellite SAR system extracted from them has 0.325 of HPBW(half-power beamwidth), 0.691 of FNBW(first-null beamwidth), and 11.17 db of PSLR(peak to side lobe ratio), respectively. Key words : Satellite SAR System, COSMO-SkyMed, Polarimetric Active Transponder, Azimuth Radiation Pattern Ⅰ. 서론위성 SAR 시스템의방사패턴분석연구는시스템검 보정을위한기준데이터를제공하며, 운용중인시스템의이상여부를확인하기위해이용될 수있다 [1]. 일반적으로위성 SAR 시스템의방사패턴은후방산란계수가균일하고넓은지역 ( 예, 아마존우림지역, 몽골초원지대등 ) 을측정한 SAR 영상데이터로부터추출이가능하나 [2],[3], 국내의지리적특성상이에부합되는넓은지역의검 보정장 본논문은국방광역감시특화연구센터프로그램의일환으로방위사업청과국방과학연구소의지원으로수행되었음 (No.2012-09-007). 홍익대학교전자정보통신공학과 (Department of Electronic Information and Communication Engineering, Hongik University) Manuscript received July 16, 2012 ; Revised August 20, 2012 ; Accepted September 4, 2012. (ID No. 20120716-083) Corresponding Author : Yisok Oh (e-mail : yisokoh@hongik.ac.kr) 1204 c Copyright The Korean Institute of Electromagnetic Engineering and Science. All Rights Reserved.
능동전파반사기를이용한위성 SAR 시스템방사패턴분석 소선정이어려운제약이있다. 반면에외부장치를이용한위성 SAR 시스템검 보정기법중능동전파반사기를이용한방법은위성 SAR 시스템으로부터수신된신호를재송신하는과정에서다양한신호처리 ( 신호증폭, 지연효과, 주파수변환, 수신신호기록 / 저장등 ) 가가능하며, 측정된 SAR 영상내에서레이더목표물의분산전력적분법 (power-spill integration) 을이용한 RCS(Radar Cross Section) 추출이동시에가능한장점이있어위성시스템의송 수신신호특성을교차분석할수있게된다 [2],[3]. 본연구는실제실험환경에서의위성 SAR 시스템검 보정기반기술습득을위해, 자체설계 / 제작된능동보정기 [4] 를이용하여위성 SAR 시스템의방위각방향방사패턴측정및분석결과를선보인다. 위성신호수신을위해능동전파반사기수신단에별도의수신신호기록장치를탑재하여 COSMO- Sky- Med 위성 SAR 시스템의방위각방사패턴을측정하고, 측정된데이터로부터수신안테나와거리변화에따른방사패턴왜곡성분을제거한고유방사패턴을추출하고, 그특성을분석하였다. 또한, 측정된 SAR 영상으로부터전파반사기의 RCS를분석하고, 이를이용해수신된신호특성, 능동전파반사기의경로이득변화, 전파입사각에대한안테나설치오차등에대한다양한비교분석을시도하였다. 본논문의 2장은방위각방사패턴추출을위한배경이론에대해설명하며, 3장에서는위성 SAR 시스템의방사패턴측정을위한자체설계 / 제작된장치및실험설정법등을선보인다. 4장에서는수신된신호와 SAR 영상으로부터추출된고유방사패턴의특성을확인하고, 측정결과의정확도를분석한다. Ⅱ. SAR 신호분석배경이론능동전파반사기의수신장치로부터수신된측정신호에서위성 SAR 시스템의방사패턴을추출하기위해서그림 1과같은기하구조를이용한송 수신신호의관계를도식화할수있다. 이때, 일반적인안테나방사패턴측정과다른점은송신측과수신측간거리 (R) 가송신측의위치에따라변화하는점과수신측의안테나가고정되어있어측정된신호에 그림 1. 위성 SAR 시스템방사패턴수신기하구조 Fig. 1. Geometry for receiving the radiation patterns of satellite SAR system. 수신측안테나의방사패턴이반영된다는점이다. 본장에서는수신측의방사패턴과거리변화효 과를제거하고, 순수한위성 SAR 시스템의방사패 턴을추출하기위해 Friis 방정식을이용한방법과 지상측능동전파반사기의 RCS 를분석 / 예측하기위 한이론적방법을설명한다 [5],[6]. 또한, 실제실험에 서지상측측정시스템으로부터획득된정보는위성 SAR 영상데이터로부터획득된패턴및 RCS 와비 교 / 분석하여실험정확도를검증한다. 2-1 수신신호를이용한방사패턴추출 두개안테나간의송 수신전력관계는식 (1) 과 같은 Friis 방정식에의해표현될수있으며, 여기서 P r,t 는송수신전력, G r,t 는송수신안테나의이득, 는송 수신신호의편파특성을각각나타낸다 [6]. (1) (2) 식 (1) 로부터송신측 ( 위성 SAR) 과수신측 ( 능동전 파반사기수신부 ) 의방위각방향방사패턴만을고 려할때, 그림 1 에서와같이고정된수신측과이동 중인송신측의방사패턴이모두반영된신호 (P meas) 가수신된다. 또한, 송신측의위치 (u, slow-time domain) 에따른거리변화 (R(u)) 특성이수신신호에포 1205
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 23, no. 10, Oct. 2012. 함된다. 이와같은특성은식 (2) 와같이정리되며, 수신신호가능동전파반사기내부의증폭회로를거 칠경우추가될수신경로이득 (G Rx,loop) 을식 (2) 에 포함시킨다. (3) (4) 방위각방향방사패턴추출을위해식 (2) 의측정 신호 P meas() 를수신측방사패턴 G r() 와위성시스 템위치변화에따른수신거리 R(u) 변화를제거하 여식 (3) 과같은송신측방사패턴 G t() 를이론적으 로계산해낼수있다. 이때, 위성 SAR 시스템의비 행정보, 운용규격, 능동전파반사기의경로이득과 설치방법등을분석하여위성 SAR 시스템의출력 신호 (P t) 의크기와관련된계수 M 1 을얻을수있다. 2-2 능동전파반사기의레이더단면적 위성 SAR 시스템방위각방향방사패턴측정실 험의정확도및타당성을검증하기위해지상측능 동전파반사기의 RCS 를예측하고, 실제측정결과와 비교 / 분석하는방법을이용할수있다. 능동전파반 사기의 RCS 는송 수신안테나와내부증폭회로의 경로이득으로구성된식 (5) 로표현될수있다 [6]. ± 여기서, G r0,t0 은송수신안테나의중심각이득을나 타내며, G loop 은증폭회로의경로이득그리고 P r,t (45 ) 는 45 기울인안테나의편파손실 (polarization- loss factor) 을나타낸것이다. (5) 위성 SAR 시스템방사패턴측정을위해본연구 에이용된능동전파반사기의 RCS 는경로이득과 송 수신안테나의이득, 그리고안정된완전편파 응답특성을고려해 45 기울여거치된송 수신안 테나의편파손실 6 db 등을포함해최대 63.1 dbsm 의크기를갖는다. 2-3 분산전력적분법 (Power-Spill Integration) 앞서설명한능동전파반사기를이용한위성 SAR 시스템의방사패턴획득과실험장치자체의고유 RCS 특성을분석한방법의타당성을교차분석하기 위해서실험당일촬영된위성 SAR 영상데이터를 활용하였다. SAR 영상데이터내점목표물 (point target) 의 IRF(Impulse Response Function) 특성이반영된 분산전력 (power-spill) 을적분하는방법으로능동전 파반사기의 RCS 를추출할수있으며, 이를앞선계 산결과또는보정된 scatterometer 를이용한실제측 정값등과비교할수있다 [4]. 능동전파반사기의분산 전력적분법은식 (6) 과같이나타낼수있다 [2]. 여기서, 전체적분면적 배경면적 픽셀수 번째픽셀의후방산란계수 방향해상도 Ⅲ. 위성 SAR 시스템방사패턴측정 (6) 위성 SAR 시스템 (COSMO-SkyMed) 의방사패턴 측정을위해 3 m 급해상도를갖는 strip-map 모드의 SAR 영상을 16 일주기로반복측정하였으며, 이때 자체제작된능동전파반사기와스펙트럼분석기 (Adventest R3273) 를이용한별도의외부수신장치로 위성 SAR 시스템의방사패턴을측정 / 기록하였다. 실시간으로획득된데이터는수신전력크기와주파 수성분을포함한측정값으로실험정확도및타당 성분석을위해활용될수있다. 또한, 다양한크기 표 1. 측정시스템규격 Table 1. Specification of measurement system. 품명규격비고 송 수신안테나 21.05 dbi 안테나이득 증폭회로 68 db 경로이득 레이더단면적, RCS ~60 dbsm f0=9.65 GHz 스펙트럼분석기 ~26.5 GHz Adventest R3273 데이터기록장치 ~27 msec Sampling rate 가변감쇄기 0 ~ 80 db 1 & 10 db 간격 비행궤적지시선 3~5 m - 1206
능동전파반사기를이용한위성 SAR 시스템방사패턴분석 표 2. 위성 SAR 시스템운용정보 Table 2. System parameters of satellite SAR. 시스템정보규격비고 비행고도 627 km - 비행속도 7.546 km/s Orbit velocity 감지거리 55.815 km - 감지시간 7.397 sec - 입사각 37.42 수신장치기준 및설치오차를최소화하기위한자동측정기법으 로그림 3 과같이측정오차가최소화된 3 차원고유 패턴을측정 ( 그림 3(a)) 하고, 이를 45 회전시킨측정 거리 (slant range) 722 km 중심거리, R 0 방위각 ( φ) 2.2 ~+2.2 - 의능동전파반사기 RCS를실험에적용하기위해서가변감쇄기로증폭회로의경로이득을조절하여최대 60 dbsm 이내의 RCS가되는안정적인신호재전송이가능하도록실험장치를구성하였다 [4]. (a) 3D 방사패턴 (a) 3D radiation pattern 3-1 능동전파반사기의송 수신안테나 위성 SAR 시스템방위각방향방사패턴측정을 위해사용된측정시스템구성은그림 2 와같다 [4]. 45 기울인송 수신안테나및지지대, 증폭회로 그리고 Laptop PC 와스펙트럼분석기로구성된별도 의수신신호기록장치로구성된다. 이때, 위성 SAR 신호송 수신을위해사용된능동전파반사기의 45 기울인안테나의정확한기준패턴을얻기위해 2- DTST(2D Target Scanning Technique) [8] 측정기법을 이용하였다. 이는 3 차원공간상에서측정물간정렬 (b) 45 회전된측정결과 (b) 45 tilted measurement result (c) (b) 로부터추출된방사패턴 (c) Extracted radiation pattern from (b) 그림 2. 측정시스템구성 Fig. 2. Configuration of measurement system. 그림 3. 능동전파반시기의송 수신안테나방사패턴 Fig. 3. Radiation patterns of Tx/Rx antennas for the polarimetric active transponder. 1207
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 23, no. 10, Oct. 2012. 결과 ( 그림 3(b)) 로부터방위각방향방사패턴 ( 그림 3(c)) 을추출할수있다. 이때, 45 기울인안테나의방위각방향방사패턴 (HPBW=16.03 ) 근사식은식 (7) 과같다. (7) 3-2 위성 SAR 시스템운용정보 위성 SAR 시스템의방위각방향방사패턴을정확히측정하기위해서그림 1의위성및지상측측정시스템의운용정보를확인해야한다. 다시말해, 위성시스템의고도, 비행속도, 감지시간 (sensing time), 전파입사각등을통해방위각방향관측각도 (aspect angle) 와거리 (slant range) 를분석할수있다. 표 2는실험에이용된위성 SAR 시스템 (COSMO-Sky- Med 2/3호기, hh-pol., strip-map himage mode, 해상도 3 m) 의운용정보및시스템파라미터를정리한것으로식 (3), (4) 에적용하여순수한위성 SAR 시스템의방사패턴을추출할수있다. (a) 측정데이터 (a) Logged data 3-3 수신안테나패턴측정 능동전파반사기와수신장치를이용한실험은 2011 년 10월과 12월사이에총 5회 ( 국립식량원시험작목반, 수원 ) 수행되었으며, 본논문에서는 10월 14일과 12월 1일에각각수행된실험결과를선보인다. 그림 4는실시간으로기록된위성 SAR 출력신호를나타낸것이다. 위성시스템의신호송출시간동안약 280개의샘플데이터를획득하여약 7.56초의감지시간을측정데이터로부터확인할수있었으며, 이는위성 SAR 시스템의감지시간약 7.39초와매우일치한결과임을확인하였다. 이때, 측정된감지시간이실제감지시간보다약간긴것은기록장치의실시간처리를위한시간지연으로부터발생된오차성분이다. 또한, 측정된신호의주파수성분을분석한결과, 9.62 GHz에집중된주파수성분이수신되었으며, 이는중심주파수 9.6 GHz의 chirp-pulse 신호를사용하는위성 SAR 시스템의특성을반영한결과이다. Ⅳ. 방위각방사패턴분석결과수신장치로부터획득된측정신호는식 (3), (4) 와 (b) 수신신호의주파수성분 (b) Frequency distribution of the received signals 그림 4. 수신된위성 SAR 신호특성 Fig. 4. Property of the received satellite SAR signals. 식 (7) 을이용하여거리및각도변화에의한왜곡을 수정하였으며, 또한그림 1 의위성및지상측거리 를이용하여관측각도 ( 2.2 ~+2.2 ) 를확인할수 있으며, 이를이용해데이터샘플간격은방사패턴 관측각도로변환된다. 이때, 능동전파반사기를이용한위성 SAR 시스템 방위각방향방사패턴측정이원활히이루어졌음을 비교분석하기위하여, 추출된위성 SAR 시스템의 방사패턴을이용하여능동전파반사기의 RCS 를예 측해볼수있다. 또한, 획득된위성 SAR 영상으로 부터능동전파반사기의분산전력을적분하여 SAR 영상데이터내 RCS 를분석할수있다. 그림 5 는 2011 년 10 월과 12 월에각각측정된위성 SAR 시스템의방사패턴으로 SAR 영상데이터에 포함된기준방사패턴과안테나모델 (240 64 배 열 ) [1] 을이용해비교분석한결과이다. COSMO-Sky- 1208
능동전파반사기를이용한위성 SAR 시스템방사패턴분석 그림 5. 측정된위성 SAR 시스템방위각방향방사패턴 Fig. 5. Measured radiation patterns of the satellite SAR system in azimuth-direction. Med SAR 영상으로부터제공되는기준방사패턴은 주엽 (main-beam) 에한정된값이어서안테나모델을 이용해주변다섯개의부엽 (side lobe) 을포함한방 사패턴을추가하여보다상세한비교분석을시도 하였다. 측정된위성 SAR 시스템의정규화된방사패턴 은거리변화 R(u) 와수신안테나패턴 G r,xpat() 영향 이제거된것으로, 각각의방사패턴은식 (8a)~(8c) 와같은근사식으로표현될수있다. (8a) (8b) (8c) 식 (8a) 는기준패턴의주엽부위를표현한식이 며, 식 (8b) 와식 (8c) 는각각 2011 년 10 월 14 일과 12 월 1 일에측정된주엽부위표현식이된다. 기준데 이터와측정데이터의표현식을이용한데이터분석 결과, 중심점에서약 0.5 db(10 월 14 일측정 ) 와 0.3 db(12 월 1 일측정 ) 의왜곡을확인하였다. 표 3 은세 부비교분석결과를정리한것으로기준값에부합 되는결과를확인하였다. 본연구의정확도를교차검증하기위해앞서언 급한식 (5) 와식 (6) 을이용한방법으로능동전파반 표 3. 측정된방사패턴비교분석결과 Table 3. Comparisons of the measured radiation patterns. 1) 항목 Half-power beamwidth First-null beamwidth Peak to side lobe ratio [db] 비고 기준값 측정값 10/14 12/01 0.295 0.335 0.315 0.684 0.681 0.700 오차 0.04 /0.02 0.003 /0.016 13.27 11.39 10.94 1.88 /2.33 1) 안테나 (240 64 배열 ) 모델기준 표 4. 능동전파반사기 RCS 분석결과 Table 4. RCS of the polarimetric active transponder. 측정일 1) 예측값 2) 측정값오차 10/14 34.69 34.48 0.21 12/01 40.32 40.18 0.14 비고 1) 2) 식 (5) 레이더단면적계산식이용식 (6) power-spill integration 이용 사기의 RCS 를예측 / 분석하였다. 식 (5) 를이용한능 동전파반사기의 RCS 예측은그림 5 와식 (8) 의표현 식을적용해계산가능하며, 그예측값은각각 34.69 dbsm(10 월 14 일, 설정값 35 dbsm) 과 40.32 dbsm(12 월 1 일, 설정값 40 dbsm) 이다. 그림 6 은획득된위성 SAR 영상데이터 ( 예, 10 월 14 일, COSMO-SkyMed 2 호기, hh-pol., strip-map himage mode, 해상도 3 m) 로영상내모든픽셀들은후방 산란계수 (σ ) 로보정된결과이며, 능동전파반사기 의분산전력 ( 그림 6(b) 점선내부에위치 ) 특성을나 타낸것이다. 식 (9) 의분산전력적분법으로부터추 출된능동전파반사기의 RCS 는 34.48 dbsm 이다. 같 은방법으로추출된 12 월 1 일의측정결과는 40.18 dbsm 이다. Ⅴ. 결론 본논문에서는 X- 밴드대역의자체제작된능동 전파반사기를이용하여위성 SAR 시스템의방위각 방향방사패턴을측정하였으며, 위성 SAR 영상으 로부터능동전파반사기의 RCS 를추출함으로써시 1209
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 23, no. 10, Oct. 2012. 템방사패턴측정 / 추출기법및수신장치연구에기여될것으로기대된다. 감사의글저자들은측정업무에도움을준홍익대학교전파응용연구실신종철, 주정명, 박신명에게감사한다. 그리고 COSMO-SkyMed SAR 영상획득에협조해준 ASI-Italian Space Agency에게감사한다. (a) 후방산란계수 (a) Backscattering coefficients (b) SAR 영상 (b) SAR image 그림 6. 위성 SAR 영상 (2011 년 10 월 14 일 ) Fig. 6. Satellite SAR image(oct. 14, 2011). 험결과및측정시스템의원활한운용을교차검증 한연구결과이다. 측정된방사패턴분석결과, 안 테나모델과의평균오차는 HPBW 가 0.03, FNBW 가 0.01, PSLR 이 2.11 db 로측정환경과스펙트럼 분석기의 sampling rate 를고려할때매우정확한결 과를보였다. 또한, 실제실험에사용된능동전파반 사기의 RCS 분석결과, 역시평균오차가 0.18 db 로 실제외부검 보정장치운용을위해허용오차범 위내의결과를확인하였다. 본연구는위성 SAR 시 스템검 보정을위한기반기술습득을위해수행 되었으며, 능동전파반사기를이용한위성 SAR 시스 참고문헌 [1] P. Capece, "Active SAR antennas: design, development, and current programs", International Journal of Antennas and Propagation, 2009. [2] A. Freeman, "SAR calibration: an overview", IEEE Trans. Geosci. Remote Sensing, vol. 30, no. 6, pp. 1107-1121, Nov. 1992. [3] S. Falzini, V. Speziale, and E. De Viti, "COSMO- SkyMed active calibrator: a sophisticated tool for SAR image calibration", Geosci. and Remote Sensing Proceedings, IGARSS'07, pp. 1577-1580, Jul. 2007. [4] 황지환, 권순구, 원중선, 오이석, "X-밴드대역능동전파반사기 RCS 분석연구 ", 한국전자파학회논문지, 22(3), pp. 327-335, 2011년 3월. [5] M. Soumekh, Synthetic Aperture Radar Signal Processing with Matlab Algorithm, John wiley & Sons, Inc., 1999. [6] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition, John Wiley & Sons, Inc., USA, 2005. [7] D. R. Brunfeldt, F. T. Ulaby, "Active reflector for radar calibration", IEEE Trans. Geosci. Remote Sensing, vol. 22, no. 2, pp. 165-169, Mar. 1984. [8] 황지환, 박성민, 권순구, 오이석, "X-밴드완전편파 scatterometer 시스템보정에관한연구 ", 한국전자파학회논문지, 21(4), pp. 408-416, 2010년 4 월. 1210
능동전파반사기를이용한위성 SAR 시스템방사패턴분석 황지환 2001 년 2 월 : 홍익대학교전파공학과 ( 공학사 ) 2003 년 2 월 : 홍익대학교전파통신공학과 ( 공학석사 ) 2003 년 4 월 ~2006 년 5 월 : LG 전자단말연구소연구원 2009 년 3 월 ~ 현재 : 홍익대학교전자정보통신공학과박사과정 [ 주관심분야 ] 전자파수치해석, GB-SAR 시스템, 마이크로파원격탐사 오이석 1982 년 2 월 : 연세대학교전기공학과 ( 공학사 ) 1988 년 12 월 : University of Missouri-Rolla 전기및컴퓨터공학과 ( 공학석사 ) 1993 년 12 월 : University of Michigan, Ann Arbor 전기공학및컴퓨터과학과 ( 공학박사 ) 1997 년 ~2001 년 : 대한원격탐사학회상임이사 2001 년 ~2008 년 : 한국전자파학회상임이사 2006 년 ~2008 년 : Chair, IEEE GRS Korea Chapter 2009 년 ~2010 년 : Stanford University 방문교수 1994 년 ~ 현재 : 홍익대학교전자전기공학부교수 2009 년 ~ 현재 : IEEE Fellow [ 주관심분야 ] 전파산란, 마이크로파원격탐사, 레이더, 안테나 권순구 2007 년 2 월 : 홍익대학교전자전기공학부 ( 공학사 ) 2009 년 2 월 : 홍익대학교전자정보통신공학과 ( 공학석사 ) 2009 년 3 월 ~ 현재 : 홍익대학교전자정보통신공학과박사과정 [ 주관심분야 ] 전파산란, 마이크로파원격탐사, SAR 영상분석 1211