국9307.fm

Similar documents
국8411.fm

43(5)-11.fm

국9409.fm

( )-103.fm

국706.fm

국9209.fm

<30372E31362D323028BDC5C7F6C5C32DB9CCB1B970626D292E666D>

44(3)-16.fm

국705.fm

43(4)-06.fm

44(2)-11.fm

139.fm

43(4)-08.fm

12.077~081(A12_이종국).fm

한1009.recover.fm

국817.fm

43(6)-07.fm

44(5)-10.fm

44(2)-06.fm

6.fm

국8410.fm

44(4)-06.fm

44(2)-08.fm

Microsoft Word _kor.doc

(1)-01(정용식).fm

10(3)-02(013).fm

국707.fm

10(3)-06(021).fm

( )-84.fm

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

06국306.fm

( )-47.fm

06국305.fm

45(3)-15(유승곤).fm

21.fm

45(3)-07(박석주).fm

고등학교 수학 요약노트 - 확률과 통계

44(2)-02.fm

PDF

( )-40.fm

°ø±â¾Ð±â±â

44(5)-03.fm

10(3)-10.fm

untitled

04.fm

source.pdf

(오승모).fm

14.531~539(08-037).fm

19(1) 02.fm

16(5)-02(57).fm

국816.fm

( )42.fm

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

44(2)-15.fm

국9308.fm

( )국11110.fm

48.fm

국906.fm

fm

44(4)-08.fm

( )-86.fm

( )-68.fm

31.fm

46.fm

3 x =2y x =-16y 1 4 {0 ;4!;} y=-;4!; y x =y 1 5 5'2 2 (0 0) 4 (3-2) 3 3 x=0 y=0 x=2 y=1 :: 1 4 O x 1 1 -:: y=-:: 4 4 {0 -;2!;} y=;2!; l A y 1

< D B9DABBF3C8AF29BABCB5E52E666D>

fm

44(2)-05.fm

103.fm

( )-121.fm

fm

19.fm

17.fm

587.eps

국818.fm

43(4)-11.fm

45(2)-02(최대근).fm

133.fm

Microsoft Word - KSR2013A320

16(3)-08.fm

untitled

106.fm

115.fm

사용자 설명서 SERVO DRIVE (FARA-CSD,CSDP-XX)

Microsoft Word - KSR2012A038.doc

Microsoft Word - KSR2012A172.doc

132.fm

85.fm

82-01.fm

10.fm

국8412.fm

18.fm

( )34.fm

16(5)-06(58).fm

50(3)-09.fm

슬라이드 제목 없음

°ø¾÷-01V36pš

17.fm

국702.fm


Transcription:

Carbn Letters Vl. 9, N. 3 September 2008 pp. 210-217 Preparatin and Characterizatin f Pitch/Ckes Cmpsite Ande Material fr High Pwer Lithium Secndary Battery Lan Yu 1, Kijung Kim 1, Daeyng Park 2, Myung-S Kim 2, Kab-Il Kim 3 and Yun-S Lim 1, 1 Dept. f Materials Science and Engineering, Myngji University, Gyenggi-d 449-728 Krea 2 Dept. f Chemical Engineering, Myngji University, Gyenggi-d 449-728 Krea 3 Dept. f Electrical Engineering, Myngji University, Gyenggi-d 449-728 Krea e-mail: yslim@mju.ac.kr (Received June 13, 2008; Accepted August, 292008) Abstract Petrleum pitch and cke with wet mixture methd r with dry mixture methd were investigated t develp the cmpsite andic carbn material f high pwer lithium in battery. Ckes cated with pitch were btained by the heat treatment f mixture f ckes and pitch with different weight ratis at 800 ~ 1200 C. The charge and discharge characteristic f the cnsequent cmpsite andic carbn material assembled in batteries was tested. Ckes with wet mixture methd have a smth surface and their capacity changed little with changing temperature and cntent as cmpared t the ckes with dry mixture methd. Althugh the reversible capacities shwed different values by the ande manufacturing methd, the cmpsite ande with the mixture f 20 wt% f petrleum pitch and 80 wt% f cke shwed the higher pwer capability and initial efficiency than the pitch based ande. Hwever, the reversible capacity f the cmpsite ande shwed the reduced value as cmpared with the pitch based ande. Keywrds : Lithium Secndary Battery, Ande, Carbn, Ckes, Pitch rl l v r kp (HEV: Hybrid Electric Vehicle) p rvp p e p erp [1,2]. l pep q p p q p rv s p n q n p rv rvm pm p rv p [1]. rv p l r p Ž pv p p rv p p q rp p r l p v pm p rv l l p l l~l l v p [1,2]. pm p rv p q q l p q q s kr l rp p ˆ q p l ˆ q [3,4]m r ˆ q p [5-7]. ˆ q p sl pm p r vp rn p s j vv p rp r n p ˆ q 6 1 p q p pp lp p n p 372 mah/gp [8-9]. l ˆ r p ˆ p s 372 mah/g p p p n p v rp v l n l p l p n p l v v p [10]. p rvl n rp ˆ q }l lp. }l lp Ž sp l Ž rse v pqp p k v kk pmp p k HEVn p seˆv p [11]. r ˆ q r ˆ rp v, d p p. p l p v l llv rm} ˆ q kp m v p kpv } m p d s v ˆ r ~. p rm} ˆ q lp p n p 372 mah/g j p n p ˆ [12]. v l e v p q vp ˆ l llv le lp p n p k v p [13,14]. d p l l p ˆ v p p v ˆ rl p p k kr p l r r k. dp r n p 200 ~ 250 mah/gp ll lvv k r vp n p [5]. d ll ˆ ˆ p q l pmp p/ˆ pl rp [15]. l l pm p rvp ˆ p q l, rp n

Preparatin and Characterizatin f Pitch/Ckes Cmpsite Ande Material fr High Pwer Lithium Secndary Battery 211 Table 1. Basic Prperties f Petrleum Pitch Sample Petrleum Pitch Sftening Pint ( C) Particle Size Distributin d10 d50 d90 dmax Carbn Yield (%) Slubility f THF (%) Ash (%) 250 0.49 µm 3.08 µm 7.43 µm 12.00 µm 58.05 55.8 0.07 v p d t q r sm q p sq p l p n p ˆ dp l Ž m. v d p v n l r p s m. x k d q l Ž l p r vn p q rs m. Ž p e de p n m. e p d p p n l 12e k ˆ q p. de p n-hexanel l l v kp p r slurry s l n-hexanep r dm e n-hexanel l p 250 Cp tl 1h k s kr eˆ ˆ q p. e de l p rs ˆ q v p l 800 ~ 1200 Cl 1e k l}, planetary mill 325 mesh sieve n l r eˆ p p q n ˆ n m. l l n p p Table 1. n p l rp 250 Cp, pq 3.08 µmp. THF n 55.8%p ash kp 0.07%p ˆ pp v p 1000 Cl 58.05%p. k p sƒ rs ˆ q l l XRD (Philips, U.S.A., CuKα =1.542Å)p l r sp p m, SEM (Hitachi, S-3500N, Japan)p p mp dl p Ž l r p l FE-SEM (Hitachi, S-4800, Japan) p l p q m. TGA (TA Instrument C., TA-Q60, U.S.A.) p N 2 (200 ml/min) l 5 C/minp dm l p m. FT-IR (Bruker C., FT-IR with Raman/NIR Vertex 70 with FT-Raman, U.S.A.)p sp m. l l n rv Žn ˆp yrv, l v v p pn l p vp rs m. p PVDF (plyvinyldene fluride)p n, n NMP (1-methyl-2-pyrrdidinne, Samchun Pure Chemical,, 99.5%) n m p PP(plyprpylene), r v p 1M LiPF 6 mp n 1:1:1 pp EC (ethylene carbnate): EMC (ethyl methyl carbnate): DMC (dimethyl carbnate) r kp n m. p v 93 wt. %l PVDF 7 wt. % r kp NMP ~ p hmgenizer n l 3000~4000 rpmp l d l. d pl p (dctr-blade) p Ž 100 Cp m l 24 h s mp rll press 80 C l 60 µm v k l 2.5 2.5 cm q m. p rs r p seˆ grve bxl m. rs p l k p k p 3 3cm p lithium metalp eˆ cpper meshp n m m p 1ppm p rl glve bxl r k p n l yrv s m. x s rvp r p s l r q (WBCS-3000, Wna Tech, Krea)l s yrv l rr p pn l r e p ee m. r e Cut-ff 0.005 V ~ 2 V v m r C- rate 0.2C re r C-rate 0.2C, 1C, 2C, 3C, 5C v r m. m k p Fig. 1p n as-received m dp XRD m as-received 800, 1000 1200 C l l} XRD ˆ l. Fig. 1-(a)l brad, d rp sharp ˆ p p kp rv vp

212 Lan Yu et al. / Carbn Letters Vl. 9, N. 3 (2008) 210-217 Fig. 1. XRD prfiles f (a) petrleum pitch and ckes, (b) heat-treated petrleum pitch. Fig. 2. FT-IR spectra f (a) petrleum pitch and (b) ckes. l pp, p d l} rp rs d rp rv vp rpp p pl. v l dp r pp p pl. Fig. 1-(b)l l} m 800 Cl 1200 C v v p skv p Intensity v m. p l} m v p r kv p p pl. Fig. 2-(a) l n l FT-IR d p ˆ l. vp rp s v s p p, sp 3050, 1611, 1505, 1052, 872, 811, 750-1l 438 cm ˆ, v s 1p 2955, 2920, 2855 1l 1450 cm ˆ. 3050 cm s tl C-H stretch, 1611 1470 cm mlp p 1 stretching f armatic C = C grup p ˆ. ml 1300 1p 1000 cm s tl inplane C-H bending s ˆ. 900 ~ 700 cm m 1 lp sp ut-f-plane bending f armatic C-H ˆ. 438 cm 1 ut-f-plane bending f armaticp ˆ. 2955, 2920 1p 2855 cm 3 p rp v s ˆ (stretching) ˆ [10]. 800, 1000 1200 Cl 1e j l} l FT-IR p m. 800 Cl l} 1200 Cl l} p p p p. p l} m kvl p v s p l s p t p ppˆ p Ž. Fig. 2-(b)l d

Preparatin and Characterizatin f Pitch/Ckes Cmpsite Ande Material fr High Pwer Lithium Secndary Battery 213 Fig. 3. TGA results f petrleum pitch and ckes. Fig. 4. Discharge characteristics f petrleum pitch at different temperatures. l FT-IR d p ˆ l. As-received ˆp d n k v l} m p ˆ ppp p pp l} l p p ˆ v kk. p d p n pr m l l} v l rs p v s p p ˆp l p k 2 l} l ˆ v k. p v l p TGA p Fig. 3l ˆ l. v l p ˆ pp 1000 Cl k 58.05% r ˆ pl, k p v e l n p tp q. v, 100 gp ne 58 g p n p m. dp n 1000 Cl p k 0.8%p 99.22% ˆ pp e l r l n m. ve gj p p q rs l k l l n m dl rv p p m. e p r vr l} m, de p n- hexanel l v kp p r slurry s l} l p q rs m. l} m 800, 1000 1200 C r l l l ntp rv s s p v s rvp d Fig. 4m Table 2l ˆ l. Fig. 4-(a) (b)l ˆ m p e de

214 Lan Yu et al. / Carbn Letters Vl. 9, N. 3 (2008) 210-217 Table 2. Discharge Characteristics f Petrleum Pitch and Ckes Sample Pwer Capability (%) Initial Efficiency (%) Reversible Capacity (mah/g) DP- 800 C 67 61 399 DP-1000 C 81 75 285 DP-1200 C 65 71 175 WP-800 C 45 59 286 WP-1000 C 90 72 225 WP-1200 C 94 70 210 Ckes 95 80 187 Table 3. Manufactures f Cmpsite Andic Carbn Cde Fabricatin Cnditin fr Cmpsite Andic Carbn D-P80C20 Pitch 80 w/ + Cke 20 w/, 1000 C-1 h heat-treatment D-P50C50 Pitch 50 w/ + Ckes 50 w/, 1000 C-1 h heat-treatment D-P20C80 Pitch 20 w/ + Ckes 80 w/, 1000 C-1 h heat-treatment W-P80C20 Pitch 80 w/ + Ckes 20 w/, 250 C-3 h stabilizatin and 1000 C-1 h heat-treatment W-P50C50 Pitch 50 w/ + Cke 50 w/, 250 C-3 h stabilizatin and 1000 C-1 h heat-treatment W-P20C80 Pitch 20 w/ + Cke 80 w/, 250 C-3 h stabilizatin and 1000 C-1 h heat-treatment rl 800 Cl l} mp p n p ˆ lv p kr p n lvp p pl. l1200 Cl l} mp p kr p kv n p p p pl. l} m 1000 Cp n r p n p kr p ˆ l. p m l l} s q p ˆ ~ ˆ p p l sp q p [16]. el q sq l pmp p p p r l n p v mv r e pm ˆ p l nl p pp k [16]. m v l r p v el q l pp v p kr p v n p [17,18]. d p p n n p kp, p kr p e p rs r l rp pp p pl. de p rs r p l l e d r p n p kp, p kr p 800 Cl l} n rn d p m. Fig. 4-(a) (b) p q l, p ln p l Table 2l ˆ l. e l p l} rs p q p n 800 Cl l} n ln p 399 mah/g n kp, pp 67%m 61% rp n k. 1000 Cl l} n ln p 285 mah/gp t p ˆ lp, pp 81% m 75% ˆ l. de el p l} rs p q p n e el p rs p 1000 Cl rs q q n p ˆ l. 1000 Cl l} p q p n, ers p ln p, ders p p n p m. d r p n p r l ˆ p, ln p n ˆ l p q p n p p l., ln, pp l p q p l} m 1000 C r m. w Table 3l p q p rs s p ˆ l. Table 3p s l p rs p q p l}, planetary mill, 325 p ~ p p q rs m. Fig. 5l d rs p q p SEM ˆ l. SEM vl ˆ p e de p rs p q p ˆ dp ˆ m p kp p Ž l rp ˆ m. de l p rs p q e l p rs p q pqp p Ž p rp ƒr p. Fig. 6p p q p p. d tep Ž p ˆ p. l d pqm l Ž l ppp p pl.

215 Preparatin and Characterizatin f Pitch/Ckes Cmpsite Ande Material fr High Pwer Lithium Secndary Battery Fig. 5. SEM phtgraphs f cke and cmpsite andic carbn. 가역용량은 우수하며, 사이클 안정성은 D-P20C80을 제외하고 는 열등한 특성을 나타내었다. 또한 건식방법으로 1000 C에서 열처리한 피치와 비교해 보면 가역용량은 감소하였고 안정성 은 향상되었음을 확인할 수 있었다. Fig. 7-(b)에는 습식방법에 의한 복합음극재료의 전지 특성인데, 건식방법과 달리 코크스 와의 비교 시 가역용량이 모두 상승하였고, 사이클 안정성도 동등 정도의 경향을 나타내고 있다. 또한 습식방법으로 1000 C 에서 열처리한 피치와 비교해 보면 W-P80C20을 제외하고 가 역용량은 감소하였고 사이클 안정성은 향상되었음을 확인할 수 있었다. Table 4에 복합 음극재료의 출력특성, 초기효율 및 가역용량 을 나타내었다. 건조방식으로 제조한 D-P20C80 복합 음극재 료는 피치나 코크스를 단독으로 사용했을 때보다 우수한 전지 성능을 보임을 확인 할 수 있었다. 또한 다른 복합 음극재료 보다 우수한 전지 성능을 나타냄을 확인 할 수 있었다. 그러 나 습식방법으로 제조한 복합음극재료의 경우, 피치 단독으로 제조된 WP-1000보다는 가역용량이, 코크스보다는 출력특성이 열등한 결과를 나타내었다. 건식방법과 달리 습식방법에 의해 Fig. 6. Crss sectin f cmpsite andic carbn. 3.4. 제조된 복합 음극재료의 전지 특성 Fig. 7에 다양한 질량비로 제조된 복합 음극재료의 전지성 능을 나타내었다. Fig. 7-(a)에는 건식방법에 의해 제조된 복합 음극재료의 결과이다. 복합 음극재료를 코크스와 비교해 보면

216 Lan Yu et al. / Carbn Letters Vl. 9, N. 3 (2008) 210-217 Fig. 7. Discharge characteristics f cmpsite andic carbns. Table 4. Discharge characteristics f petrleum pitch/ckes cmpsites Sample Pwer Capability (%) Initial Efficiency (%) Reversible Capacity (mah/g) D-P80C20 70 76 217 D-P50C50 69 72 196 D-P20C80 92 81 236 DP-1000 C 81 75 285 W-P80C20 90 54 225 W-P50C50 85 67 213 W-P20C80 93 82 194 WP-1000 C 90 72 225 Ckes 95 80 187 Fig. 8. Discharge characteristics f petrleum pitch/ckes cmpsites and petrleum pitch at 1000 C heat treatment.

Preparatin and Characterizatin f Pitch/Ckes Cmpsite Ande Material fr High Pwer Lithium Secndary Battery 217 rs p q l rv p ˆ p d e p rs e n-hexanel p r q p p n m, 250 Cp tl s kr e ˆp f C-O el l} k l s p rp n k pl p Ž. p p l ers l n p r p rp p Ž. e de rl rv p r n p qp rk-n p Fig. 8l ˆ l. Fig. 8p (a)m (b)l p p q rkl p r p n sp l sq p l p n p k pl. lp rs r lr } ˆr sq v k rkp m p l n p d v pl. p l p pr r s l p mp pr rkl p/ˆ l ˆr sq v d p n ll ˆ p q l pmp p/ˆ p p mp p ˆp rl p l m p Ž [19]. l} l rs p q p WP-1000p n dm l p q P-C ƒ p p p p mp ˆ d pl ppp p m. m d l q rs m, pm p rvp p v rn l r r p s k m p p ll. 1. d p q n rvp p tp, l} l p q rs nl 1200 C rn ln p v mp pp r p p pl. p r q p n ders p n l l} 1000 C p l v nl ln p v m p p d m. ders p n l rs p q p p kr e l p rs p q n m. 2. p q rs p, D-P20C80 W-P20C80 p q d r, p ln p v m. e dep rs l ln p p pp, rs l n l} p q pp v mp ln p m. ers p ders n rvr p ˆ l. p rv q l p l l p v lp pl. š x [1] rq lv, pm p rv l, 2007, 6, 10. [2] l, 2 rvl, 2005, 9, 20. [3] Manev, V.; Naidenv, I.; Puresheva, B; Zlatilva, P.; Pisti, G.; J. Pwer Surces 1995,G55, 211. [4] Simn, B.; Flandris, S.; Guerin, K.; Fevrier-Buvier, A.; Teulat, I.; Biensan, P. J.GPwer Surces 1999, 312. [5] Kim, J. S. J. Pwer Surces 2001, 70. [6] Sat, Y.; Tunuma, K.; Takayama, T; Kbayakawa, K.; Kawai, T.; Ykyama, A.G J. Pwer Surses 2001, 97-98, 165. [7] Cnches, A.; Santamaria, R.; Menendez, R.; Alcantara, R.; Lavela, P.; Tirad, J. L.GJ. Pwer Surses 2006, 161, 1324. [8] End, M.; Kim, C.; Nishimura, K.; Fujin, T.; Miyashita, K. Carbn 2000, 38, 183. [9] Yata, S.; Kinshita, H.; Kmri, M.; And, N.; Anekawa, A.; Hashimt, T. ExtendedGAbstracts f 60 th Annual Meeting f the Electrchemical Sciety f Japan, Tky,G Japan, 1993, 2G09. [10] v, ˆ q m pn. m, 2006, 250. [11] v, mpm, md, J. Krean Electrchemical Sc., 2004, 7, 32. [12] Sat, K.; Nguchi, M.; Demachi, A.; Oki, N.; End, M. Science, 1994, 264 556. [13] Mbuchi, A.; Tkumitsu, K.; Fujimt, H.; Kasuh, T. J. Electrchem. Sc., 1995, 142,G1041. [14] Winter, M.; Nvak, P.; Mnnier, A. J. Electrchem. Sc., 1998, 145, 428. [15] Dahn, J. R.; Sileigh, A. K.; Reimers, J. N.; Zhng, Q.; Way, B. M. ElectrchemicaGActa, 1993, 38, 1179. [16] Mchida, I.; Ku, C. H.; Yn, S. H.; Krai, Y. J. Pwer Surces, 1998, 75, 214. [17] Zheng, T.; Liu, Y.; Fuller, S.; Tseng, U.; Sackn, V.; Dahn, J. R. J. Electrchem Sc.,G1995, 142, 2851. [18] Takami, N.; Sath, A.; T. Ohsaki, T. Ekectrchim Acta, 1997, 42, 2537. [19] Dahn. J. R.; Sileigh, A. K.; Reimers, J. N.; Zhng, Q.; Way, B. M. ElectrchimicaGActa, 1993, 38, 1179.