도심지 내 중·저층 주요시설물(학교, 병원 등)의 응급복구 내진보강기술 개발에 관한 연구 최종 보고서

Similar documents
°æÁ¦Àü¸Á-µ¼º¸.PDF

untitled

<BFDCB1B9C0CE20C5F5C0DAB1E2BEF7C0C720B3EBBBE7B0FCB0E82E687770>

09 강제근로의 금지 폭행의 금지 공민권 행사의 보장 중간착취의 금지 41 - 대판 , 2006도7660 [근로기준법위반] (쌍용자동차 취업알선 사례) 11 균등대우의 원칙 43 - 대판 , 2002도3883 [남녀고용평등법위

<3036C7E2BCF6C3D6C1BEBABB2E687770>


INDUS-8.HWP

CONTENTS.HWP

진성능을 평가하여, 로프형 및 밴드형 FRP가 심부구속 철근 의 대체 재료로서의 가능성을 확인하였으며, 홍원기(2004)등 은 탄소섬유튜브의 횡구속효과로 인한 강도증가 및 휨 성능 의 향상을 입증하였다. 이전의 연구중 대부분은 섬유시트 및 튜브의 형태로 콘크 리트의 표

<C1A4C3A5BFACB1B D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

제 출 문 중소기업청장 귀하 본 보고서를 중소기업 원부자재 구매패턴 조사를 통한 구매방식 개선 방안 연구 의 최종보고서로 제출합니다 한국산업기술대학교 산학협력단 단 장 최 정 훈 연구책임자 : 이재광 (한국산업기술대학교 부교수) 공동연구자 : 노성호

세계 비지니스 정보

<5BC6EDC1FD5DBEEEBEF7C0CCC1D6B3EBB5BFC0DAC0CEB1C7BBF3C8B2BDC7C5C2C1B6BBE7C3D6C1BEBAB8B0EDBCAD28BAB8C0CCBDBABEC6C0CC292E687770>

2005 중소기업 컨설팅 산업 백서


< BACFC7D1B1B3C0B0C1A4C3A5B5BFC7E228B1E2BCFABAB8B0ED D D20C6EDC1FD2035B1B32E687770>

13Åë°è¹é¼Ł


<5B33B9F8B0FAC1A65D20B9E6BCDBBDC9C0C7BDC3BDBAC5DB20B0B3BCB1B9E6BEC8BFACB1B82DC3D6C3D6C1BE2E687770>


연구요약 1. 서론 연구의 목적 본 연구는 청소년 교육정책의 바람직한 방향을 설정하고, 미래지향적인 정책과제와 전략, 그리고 비전을 도출하기 위해 수행되었다. 이를 위해 지 난 15년간의 청소년 교육 환경 및 정책의 변화를 분석하고, 향후 15년간 의 청소년 교육 환경

정책연구개발사업 2010-위탁 대학 등록금의 합리적 책정을 위한 실행방안 연구 연 구 책 임 자 공 동 연 구 자 송동섭(단국대학교) 이동규(충남대학교) 이창세(재능대학) 한창근(인하공업전문대학) 연 구 협 력 관 장미란(교육과학기술부) 교육과학기술부 이 연구는 201

iOS ÇÁ·Î±×·¡¹Ö 1205.PDF


직업편-1(16일)


KAERI/TR-2128/2002 : SMART 제어봉구동장치 기본설계 보고서

00-1표지

<BEC6BFF4BCD2BDCCBAB8B0EDBCAD28C3D6C1BE E687770>


<BAD2B9FDBAB9C1A620BAB8B0EDBCAD5FC5EBC7D55F FB9DFB0A3BBE7C6F7C7D45F33C2F720B1B3C1A428B1D7B8B22020C3DFC3E2292E687770>

경제통상 내지.PS

°æÁ¦Åë»ó³»Áö.PDF

우루과이 내지-1

*통신1604_01-도비라및목차1~12

영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 마한문화공원 명소화 사업 기찬랜드 명소화 사업 240

[96_RE11]LMOs(......).HWP

0

< B3E22032BAD0B1E220C4DCC5D9C3F7BBEABEF7B5BFC7E2BAD0BCAEBAB8B0EDBCAD28C3D6C1BE292E687770>

<INPUT DATA & RESULT / 전단벽 > NUM NAME tw Lw Hw 철근 위치 Pu Mu Vu RESULT (mm) (mm) (mm) 방향 개수 직경 간격 (kn) (kn-m)

김성배 조한솔 이태규 김상섭19-29.hwp

<BBE7B8B3B4EBC7D0B0A8BBE7B9E9BCAD28C1F8C2A5C3D6C1BE E687770>


À̶õ°³È²³»Áö.PDF

Àç°¡ »êÀçÀå¾ÖÀÎÀÇ ÀçÈ°ÇÁ·Î±×·¥¿¡ °üÇÑ¿¬±¸.HWP

농업기반정비사업 계획설계기준 개편

< B3E220C7CFB9DDB1E2BACEC5CD20C0CCB7B8B0D420B4DEB6F3C1FDB4CFB4D E687770>

PDF

[붙임 1] 학교시설 내진성능평가 및 보강 매뉴얼 개정안_최종본( ).hwp

에서시공이용이하며벽체를허물지않고작업을할수있다. 시험체는비내진설계된학교건물의기둥을참고하여제작하였고, 시험체를보강재로보강하여반복횡하중시험을실시하였다. 보강재는알루미늄다공판과유리섬유를혼합적층한보강재와유리섬유만을적층한보강재의두종류를선택하였다. 시험체의휨강도와부재연성을통하여내진


통신1310_01-도비라및목차1~9

제 출 문 노동부 장관 귀하 본 보고서를 노동부 수탁연구과제 문화 예술산업 근로실태 조사 및 근로 자 보호방안 의 최종보고서로 제출합니다 한국노동연구원 원장 박 기 성

*통신1802_01-도비라및목차1~11

< B3E220B3EBBCF7C0CE20B5EEC0C720BAB9C1F6BBE7BEF720BEC8B3BB28C3D6C1BE292E687770>

<28BCF6BDC D B0E6B1E2B5B520C1F6BFAABAB020BFA9BCBAC0CFC0DAB8AE20C1A4C3A520C3DFC1F8C0FCB7AB5FC3D6C1BE E E687770>

U-Korea 선도사업 평가

改正稅法 企劃財政部

REVIEW CHART 1


<4D F736F F D20B4EBBFF BFB5BEF7BAB8B0EDBCAD2E646F63>

<5BB1E2BABB5D5FB0F8B0F8BACEB9AE5FBDC3B0A3C1A6B1D9B9ABBFCD5FC0B0BEC6C8DEC1F7BFA15FB5FBB8A55FB4EBC3BCC0CEB7C25FC8B0BFEBB0FAC0C75FBFACB0E8B9E6BEC85F2D5FB9AEB9CCB0E62E687770>

표1

<C0FCB9AE20B1E2BCFA20BFDCB1B9C0CEB7C220B3EBB5BFBDC3C0E520BAD0BCAE2E687770>

99-18.hwp

israel-내지-1-4

사물인터넷비즈니스빅뱅_내지_11차_ indd

<31302E204D43545F47535FC3D6C1BEBAB8B0EDBCAD2E687770>

untitled

2016년이렇게달라집니다_ 전체 최종 1223.indd

공제_조합_제도_개선_방안_등_연구(111226).hwp



교육정책연구 2005-지정-52 공무원 채용시험이 대학교육, 노동시장에 미치는 영향분석 및 공무원 채용제도 개선방안 연구책임자 : 오 호 영 (한국직업능력개발원 부연구위원) 이 정책연구는 2005년도 교육인적자원부 인적자원개발 정책연구비 지원에 의 한


<C7D0B1B3C7F5BDC520BBE7B7CAB9DFB1BCB0FA20C8AEBBEAC0BB20C0A7C7D120B3D7C6AEBFF720B1B8C3E0B9E6BEC8BFACB1B D30362C20C0CEBCE2BABB292E687770>

2010회계연도 결산시정요구사항 조치결과 분석

< B9AEC8ADBFB9BCFA20C6AEB7BBB5E520BAD0BCAE20B9D720C0FCB8C128B1E8C7FDC0CE292E687770>

목 차 I. 외부감사인의 감사보고서 II. 연결재무제표 연결재무상태표 연결포괄손

<BCADBFEFBDC3BFA9BCBAB0A1C1B7C0E7B4DC5FBCADBFEFBDC320B0F8B5BFC0B0BEC6C1F6BFF8BBE7BEF7C0C720C1F6BCD3B0A1B4C9BCBA20B9E6BEC8BFACB1B828BCF6C1A E687770>


<BAB0C3A5BABBB9AE2E687770>

장애인통계-0110-최종.hwp

<BAF9C7D8BFEEC7D7BCB1B9DA20C1F6C4A728B1B9B9AE292E687770>

A 0 D5-a (XQD Card Type) D5-b (CF Card Type)


<28C3D6C1BEC0CEBCE2BFEB29BCADBFEFBDC3B0F8B0F8C5F5C0DABBE7BEF7B0FCB8AEC7D5B8AEC8ADB9E6BEC82E687770>

장애인건강관리사업

Microsoft Word - 4장_처짐각법.doc

편주요개정내용

태평양도서국 개황.PS

사진 24 _ 종루지 전경(서북에서) 사진 25 _ 종루지 남측기단(동에서) 사진 26 _ 종루지 북측기단(서에서) 사진 27 _ 종루지 1차 건물지 초석 적심석 사진 28 _ 종루지 중심 방형적심 유 사진 29 _ 종루지 동측 계단석 <경루지> 위 치 탑지의 남북중심

<C3BBB3E2B9AEC1A6BFA1B4EBC7D120B9AEC8ADC1A4C3A5C0FBC1A2B1D9C0BB20C0A7C7D1B1E2C3CABFACB1B82DC3D6C1BE2E687770>

User's Guide

Microsoft Word - SRA-Series Manual.doc

*통신1510_01-도비라및목차1~12


PHI Research Paper PHI 연구보고서 건강검진은 어떻게 산업 이 되었나? 출판일 2015년 9월 20일 편집인 박 유 경 (시민건강증진연구소 연구원) 공동저자 김 명 희 (시민건강증진연구소 연구원) (가나다 순) 김 창 엽 (

< B3E2C7CFB9DDB1E2BACEC5CDB7B8B0D4B4DEB6F3C1FDB4CFB4D95BC3D6C1BE5D2E687770>

미얀-내지-8차

Transcription:

- i -

- ii -

- iii -

- i -

- ii -

- i -

- ii -

- i -

- ii -

- iii -

- iv -

- v -

- vi -

- vii -

- viii -

- ix -

- x -

- xi -

- xii -

- xiii -

- xiv -

- xv -

- xvi -

- xvii -

- xviii -

- xix -

- xx -

- 1 -

- 2 -

- 3 -

- 4 -

- 5 -

- 6 -

- 7 -

- 8 -

- 9 -

- 1 -

- 11 -

- 12 -

- 13 -

- 14 -

- 15 -

- 16 -

- 17 -

- 18 -

- 19 -

- 2 -

- 21 -

Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ Ÿ - 22 -

- 23 -

- 24 -

- 25 -

- 26 -

- 27 -

s T t LT 1 Fiber t TL 1 Matrix s L s L t TL s T t LT s T - 28 -

min min - 29 -

2r 2r 2R 2R Matrix Fiber max m ax - 3 -

min min - 31 -

and - 32 -

cos sin cos sin sin cos sin cos sin sin cos cos sincos sin cos sin cos sincos sin cos sin cos - 33 -

- 34 -

- 35 -

- 36 -

- 37 -

- 38 -

- 39 -

Stress-Strain Curv e 14 12 1 ess(mpa) 8 Stress-Strain Curve 25 Stress(Mpa).. 2 15 1 5 Cabon UD LT-1 Cabon UD LT-2 Cabon UD LT-3 Cabon UD LT-4 Cabon UD LT-5 2 4 6 8 1 12 14 16 Strain(μ) - 4 -

- 41 -

θ - 42 -

- 43 -

- 44 -

- 45 -

- 46 -

- 47 -

- 48 -

함침된수지종류에따른고온노출 FRP(GFRP, CFRP) 구속콘크리트의압축강도평가 - 일반에폭시수지를사용하여제작된 FRP-횡구속실험체성능평가 - 내화보강용수지를사용하여제작된 FRP-횡구속실험체성능평가 섬유종류에따른고온노출 FRP(GFRP, CFRP) 구속콘크리트의압축강도평가 - GFRP 및 CFRP에따른 FRP-횡구속실험체성능평가 콘크리트압축강도에따른 GFRP로구속후온도에대한 ( 상온, 1, 15, 2 ) 실험체를온도별로각각 3개이상제작하여압축강도평가 - 저강도콘크리트 18MPa - 보통강도콘크리트 24MPa - 고강도콘크리트 3MPa `` - 49 -

- 5 -

- 51 -

- 52 -

- 53 -

- 54 -

시제품제작 1 내화보강수지에따른 FRP 보강재구속실험체 2 FRP 섬유종류에따른보강재구속실험체 3 콘크리트압축강도에따른 FRP 구속실험체 - GFRP 섬유사용, 18, 24, 3MPa 실험방법 ± - 55 -

- 56 -

상온 - 57 -

Stress (MPa) 14 12 1 8 6 4 G18EROOM-1 G18EROOM-2 G18EROOM-3 G18E1-1 G18E1-2 G18E1-3 G18E15-1 G18E15-2 G18E15-3 G18E2-1 G18E2-2 G18E2-3 2..1.2.3.4.5.6.7.8 Strain - 58 -

상온 - 59 -

14 12 1 Stress (MPa) 8 G24EROOM-1 6 G24EROOM-2 G24EROOM-3 G24E1-1 4 G24E1-2 G24E15-1 G24E15-2 G24E15-3 2 G24E2-1 G24E2-2 G24E2-3..1.2.3.4.5.6.7.8 Strain - 6 -

상온 - 61 -

14 12 1 Stress (MPa) 8 G3EROOM-1 G3EROOM-2 6 G3EROOM-3 G3E1-1 G3E1-2 4 G3E1-3 G3E15-1 G3E15-2 G3E15-3 2 G3E2-1 G3E2-2 G3E2-3..1.2.3.4.5.6.7.8 Strain 상온 - 62 -

14 12 1 Stress (MPa) 8 6 C24EROOM-1 C24EROOM-2 C24EROOM-3 C24E1-1 4 C24E1-2 C24E1-3 C24E15-1 C24E15-2 2 C24E15-3 C24E2-1 C24E2-2 C24E2-3..1.2.3.4.5.6.7.8 Strain - 63 -

상온 - 64 -

14 12 1 Stress (MPa) 8 G24PROOM-1 6 G24PROOM-2 G24PROOM-3 G24P1-1 4 G24P1-2 G24P1-3 G24P15-1 2 G24P15-2 G24P15-3 G24P2-1 G24P2-2..1.2.3.4.5.6.7.8 Strain - 65 -

상온 - 66 -

14 12 1 Stress (MPa) 8 C24PROOM-1 6 C24PROOM-2 C24PROOM-3 C24P1-1 C24P1-2 4 C24P1-3 C24P15-1 C24P15-2 C24P15-3 2 C24P2-1 C24P2-2 C24P2-3..1.2.3.4.5.6.7.8 Strain - 67 -

콘크리트압축강도에따른 GFRP로구속후온도에대한 ( 상온, 1, 15, 2 ) 실험체를온도별로부착성능평가실시 - 보통콘크리트 24MPa - 고강도콘크리트 3MPa - 함침된수지종류에따른고온노출 FRP(GFRP, CFRP) 구속콘크리트의부착성능평가 - 섬유종류에따른고온노출 FRP(GFRP, CFRP) 부착시편콘크리트의부착성능평가 - 68 -

- 69 -

- 7 -

- 71 -

- 72 -

- 73 -

- 74 -

- 75 -

- 76 -

- 77 -

- 78 -

- 79 -

- 8 -

- 81 -

- 82 -

- 83 -

- 84 -

- 85 -

- 86 -

- 87 -

- 88 -

l l l l l l l l l - 89 -

l l l l 기존기둥에대한물리적손상발생다량의앵커설치로인한기둥의영구적손상기존보강법적용시인접벽체및구조요소에큰손상발생공기가길어짐에따른신속한복구가어려움 - 9 -

- 91 -

- 92 -

- 93 -

- 94 -

- 95 -

- 96 -

- 97 -

- 98 -

4 35 3 Stress (Mpa) 25 2 15 1 5 AL_1 AL_2 AL_3..4.8.12.16 Strain - 99 -

θ - 1 -

3 25 2 Stress (Mpa) 15 1 G4_1 G4_2 5 G4_3 G4_4 G4_5 3 6 9 12 15 18 Strain μ - 11 -

체결부클립 t Aluminum 체결부 Glass FRP Sheet - 12 -

1 8 Load (N) 6 4 FRP-3.mm FRP-3.1mm FRP-3.2mm 2 FRP-3.3mm FRP-3.4mm FRP-3.5mm FRP-4.mm..5 1. 1.5 2. Displacement (mm) - 13 -

- 14 -

- 15 -

- 16 -

- 17 -

6 5 4 Load (kn) 3 2 ORF FRF-1 1 FRF-2 FRF-3 FRF-4 5 1 15 2 25 3 Displacement (mm) - 18 -

l l l l - 19 -

- 11 -

부재명 NC1 NC1' 1 C2 2,3 C2 NC3 FG1 FG2 부재단면 부재크기 4 X 45 4 X 4 4 X 4 4 X 4 6 X 4 3 X 5 3 X 5 MAIN BAR HOOP 6-D19 2-D16 D1 @3 6-D19 2-D16 D1 @3 6-D19 D1 @3 4-D19 D1 @3 1-D19 D1 @3 2-D19 2-D19 2-D19 2-D19 CROSS TIES D1 @9 D1 @9 D1 @9 D1 @9 D1 @9 D1 @3 D1 @3 기둥상하 L 구간 부재명 FG4 FG6 1,2 G1 3,4 G1 1,2,3 G1' 부재단면 부재크기상부근하부근스트럽횡보조근 3 X 45 2-D19 2-D19 D1 @3 3 X 6 3 X 5 3 X 5 45 X 5 3-D19 3-D19 3-D16 2-D16 2-D16 2-D16 2-D16 2-D16 3-D19 2-D19 2-D19 3-D19 D1 @15 D1 @3 D1 @3 D1 @3 D1 @3 부재명 1,2 G2 3,4 G2 1,2 G3 3,4 G3 1,2,3 G2' 부재단면 부재크기상부근하부근스트럽 *4G3 단부 D1 @2 3 X 5 3 X 5 3 X 6 3 X 6 3 X 75 4-D16 2-D16 2-D16 3-D16 3-D16 2-D16 2-D16 2-D16 6-D22 2-D22 2-D22 6-D22 6-D19 2-D19 2-D19 6-D19 6-D19 2-D19 2-D19 6-D19 D1 @3 D1 @3 D1 @15 D1 @3 D1 @15 D1 @3 D1 @15 D1 @3 횡보조근 부재명 1,2 G4 2,3 G4 1,2,3,4 B1 1,2,3 G5 1,2,3 B2 1,2,3 B2 부재단면 부재크기 MAIN BAR HOOP CROSS TIES 3 X 45 4 X 45 3 X 45 33 X 7 3 X 45 4-D22 2-D22 2-D22 2-D22 D1 @3 4-D19 2-D19 2-D19 D1 @15 2-D19 D1 @3 3-D19 2-D22 2-D19 6-D22 D1 @3 6-D22 2-D22 2-D19 2-D19 2-D22 6-D22 2-D19 2-D19 D1 @15 D1 @3 D1 @3 기둥상하 L 구간 부재명 FG3' 부재단면 부재크기 MAIN BAR HOOP CROSS TIES 3 X 6 2-D19 2-D19 2-D19 2-D19 D1 @15 D1 @3 기둥상하 L 구간 - 111 -

ρ - 112 -

- 113 -

- 114 -

- 115 -

- 116 -

- 117 -

7 6 5 Stress (Mpa) 4 3 2 1 D1 D13 D16 5 1 15 2 25 3 35 4 45 5 Displacement (mm) - 118 -

- 119 -

max max max - 12 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) - 121 -

- 122 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5 Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5-8 -7-6 -5-4 -3-2 -1 Displacement (mm) 1 2 3 4 5 6 7 8 Displacement (mm) - 123 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5-124 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-1 1 2 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-1 1 2 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-1 1 2 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-1 1 2 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5-125 -

277.3kN) Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) - 126 -

- 127 -

- 128 -

5 4 3 2 Load (kn) 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5 3. 3.5 4. 4.5 Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5 3. 3.5 4. 4.5 5. -8-7 -6-5 -4-3 -2-1 Displacement (mm) 1 2 3 4 5 6 7 8 Displacement (mm) - 129 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. - 13 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. - 131 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Retrofitted Unretrofitted - 132 -

- 133 -

- 134 -

- 135 -

5 Load (kn) 4 3 2 1-1 -2-3 -4 Retrofitted Unretrofitted -5-8 -6-4 -2 2 4 6 8 Displacement (mm) - 136 -

Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. -8-7 -6-5 -4-3 -2-1 Displacement (mm) 1 2 3 4 5 6 7 8 Displacement (mm) Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. -8-7 -6-5 -4-3 -2-1 Displacement (mm) 1 2 3 4 5 6 7 8 Displacement (mm) - 137 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. - 138 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. - 139 -

- 14 -

- 141 -

- 142 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Retrofitted Unretrofitted - 143 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Retrofitted Unretrofitted - 144 -

Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5 Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5-8 -7-6 -5-4 -3-2 -1 Displacement (mm) 1 2 3 4 5 6 7 8 Displacement (mm) Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. Column Height (mm) 3 25 2 15 1 5 1.(ductility) 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. -8-7 -6-5 -4-3 -2-1 Displacement (mm) 1 2 3 4 5 6 7 8 Displacement (mm) - 145 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. - 146 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. - 147 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Load (kn) 5 4 3 2 1-1 -2-3 Retrofitted -4 Unretrofitted -5-8 -6-4 -2 2 4 6 8 Displacement (mm) Load (kn) 5 4 3 2 1-1 -2-3 -4 Retrofitted Unretrofitted -5-8 -6-4 -2 2 4 6 8 Displacement (mm) - 148 -

-5 5-4 4 Load (kn) -3-2 ORF -1 FRF-1 FRF-2 FRF-3-1 -2-3 -4-5 -6-7 -8 Displacement (mm) Load (kn) 3 2 ORF 1 FRF-1 FRF-2 FRF-3 1 2 3 4 5 6 7 8 Displacement (mm) Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) ORF FRF-1 FRF-2 FRF-3-149 -

- 15 -

Energy Dissipation Capacity(kN-m) 3 25 2 15 1 5 ORF FRF-1 FRF-2 FRF-3 1 2 3 4 5 6 7 Displacement Ductility Factor - 151 -

Accumulated Energy Dissipation Capacity(kN-m) 15 125 1 75 5 25 ORF FRF-1 FRF-2 FRF-3 1 2 3 4 5 6 7 Displacement Ductility Factor - 152 -

.8Vmax max max - 153 -

max max l l l l l - 154 -

- 155 -

- 156 -

- 157 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Experiment Analysis - 158 -

- 159 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Experiment Analysis - 16 -

- 161 -

- 162 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Experiment(Unre) Experiment(Re) Analysis - 163 -

- 164 -

- 165 -

Load (kn) 5 4 3 2 1-1 -2-3 -4-5 -8-6 -4-2 2 4 6 8 Displacement (mm) Experiment(Unre) Experiment(Re) Analysis - 166 -

- 167 -

- 168 -

- 169 -

- 17 -

- 171 -

ρ ρ - 172 -

- 173 -

- 174 -

- 175 -

- 176 -

max max max Displacemaent m=1. m=1.5 m=2. m=2.5 m=3. 1cycle Displacement control 2cycles for each ductility level Time - 177 -

μ μ μ μ - 178 -

Load (kn) 1 8 6 4 2-2 -4-6 -8-1 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 179 -

μ μ μ Δ μ Load (KN) 1 8 6 4 2-2 -4-6 -8-1 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 18 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-12 -1-8 -6-4 -2 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 2 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. -3-15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. -3-15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) - 181 -

Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. -3-15 15 3-3 -15 15 3 Hoop Strain (1-6 ) Hoop Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. -3-15 15 3-3 -15 15 3 Hoop Strain (1-6 ) Hoop Strain (1-6 ) - 182 -

μ μ μ μ - 183 -

μ μ μ μ - 184 -

Load (kn) 1 8 6 4 2-2 -4-6 -8-1 -12-1-8-6 -4-2 2 4 6 8 112 Displacement (mm) - 185 -

μ μ μ μ μ Δ μ Load (KN) 1 8 6 4 2-2 -4-6 -8-1 -12-1-8-6 -4-2 2 4 6 8 112 Displacement (mm) - 186 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-12 -1-8 -6-4 -2 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Column Height (cm) 2 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. - 187 -

Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Hoop Strain (1-6 ) Hoop Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. Hoop Strain (1-6 ) Hoop Strain (1-6 ) - 188 -

μ μ μ μ - 189 -

μ μ - 19 -

Load (kn) 1 8 6 4 2-2 -4-6 -8-1 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 191 -

μ μ μ μ μ Δ μ Load (KN) 1 8 6 4 2-2 -4-6 -8-1 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 192 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-12 -1-8 -6-4 -2 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 2 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. -3-15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. -3-15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) - 193 -

Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. -3-15 15 3 Hoop Strain (1-6 ) -3-15 15 3 Hoop Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. -3-15 15 3 Hoop Strain (1-6 ) -3-15 15 3 Hoop Strain (1-6 ) - 194 -

μ μ μ μ - 195 -

μ μ μ - 196 -

Load (kn) 1 8 6 4 2-2 -4-6 -8-1 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 197 -

μ μ μ μ μ Δ μ Load (KN) 1 8 6 4 2-2 -4-6 -8-1 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 198 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-12 -1-8 -6-4 -2 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5-3 -15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5-3 -15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) - 199 -

Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5-3 -15 15 3-3 -15 15 3 Hoop Strain (1-6 ) Hoop Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5-3 -15 15 3-3 -15 15 3 Hoop Strain (1-6 ) Hoop Strain (1-6 ) - 2 -

Load (KN) 1 8 6 4 2-2 -4-6 -8-1 ORC VARC VTRC1 VTRC2-12-1-8 -6-4 -2 2 4 6 8 112 Displacement (mm) - 21 -

- 22 -

Energy Dissipation Capacity (kn-m) 24 21 18 15 12 9 6 3 ORC VARC VTRC1 VTRC2 1 2 3 4 5 6 7 8 Displacement Ductility Factor Accumulated Energy Dissipation Capacity (kn-m) 18 15 12 9 6 3 ORC VARC VTRC1 VTRC2 1 2 3 4 5 6 7 8 Displacement Ductility Factor - 23 -

- 24 -

max μ max μ - 25 -

l l l l l - 26 -

- 27 -

- 28 -

- 29 -

sin - 21 -

- 211 -

cos exp cos exp exp cos - 212 -

- 213 -

- 214 -

- 215 -

- 216 -

- 217 -

- 218 -

- 219 -

- 22 -

5 4 Load (kn) 3 2 1 Type-1 Type-2 Type-3..4.8.12.16.2 Strain (1-6 ) - 221 -

- 222 -

- 223 -

- 224 -

- 225 -

5 Load (kn) 4 3 2 1 Normal Angle Socket Sealing 1 2 3 4 5 6 7 8 9 1 Displacement (mm) - 226 -

- 227 -

- 228 -

- 229 -

- 23 -

tan - 231 -

- 232 -

tan tan cos cos - 233 -

- 234 -

⁶ - 235 -

- 236 -

- 237 -

ρ ρ - 238 -

- 239 -

- 24 -

- 241 -

- 242 -

- 243 -

- 244 -

max max max Displacemaent m=1. m=1.5 m=2. m=2.5 m=3. 1cycle Displacement control 2cycles for each ductility level Time - 245 -

- 246 -

- 247 -

Stress (MPa) 4 35 3 25 2 15 FRP 1 1 FRP 2 FRP 3 5 FRP 4 FRP 5 2 4 6 8 1 12 Strain (1-6 ) με - 248 -

- 249 -

- 25 -

- 251 -

- 252 -

μ μ μ μ - 253 -

Load (kn) 1 8 6 4 2-2 -4-6 -8-1 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 254 -

μ μ μ μ Δ μ μ μ Δ μ Load (KN) 1 8 6 4 2-2 -4-6 -8-1 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 255 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-12 -1-8 -6-4 -2 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 2 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. -3-15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. -3-15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) - 256 -

Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. -3-15 15 3-3 -15 15 3 Hoop Strain (1-6 ) Hoop Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. 2.5 3. 3.5 4. -3-15 15 3-3 -15 15 3 Hoop Strain (1-6 ) Hoop Strain (1-6 ) - 257 -

μ μ μ - 258 -

Load (kn) 25 2 15 1 5-5 -1-15 -2-25 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 259 -

μ μ μ μ μ Δ μ μ μ Δ μ Load (KN) 25 2 15 1 5-5 -1-15 -2-25 -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 26 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-12 -1-8 -6-4 -2 Displacement (mm) Ductility 1. 1.5 Column Height (cm) 2 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 Strain (mm) Ductility 1. 1.5 2. Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. -3-15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. -3-15 15 3 Rebar Strain (1-6 ) -3-15 15 3 Rebar Strain (1-6 ) - 261 -

Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. -3-15 15 3 Hoop Strain (1-6 ) -3-15 15 3 Hoop Strain (1-6 ) Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 Column Height (cm) 14 12 1 8 6 4 2 Ductility 1. 1.5 2. -3-15 15 3 Hoop Strain (1-6 ) -3-15 15 3 Hoop Strain (1-6 ) - 262 -

μ μ μ μ - 263 -

μ μ μ μ - 264 -

Load (kn) 25 2 15 1 5-5 -1-15 -2-25 -12-1-8-6 -4-2 2 4 6 8 112 Displacement (mm) μ μ μ μ μ μ μ μ - 265 -

μ μ μ μ μ μ μ Δ μ μ μ Δ μ Load (KN) 25 2 15 1 5-5 -1-15 -2-25 -12-1-8-6 -4-2 2 4 6 8 112 Displacement (mm) - 266 -

Column Height (cm) 2 18 16 14 12 1 8 6 4 2-12 -1-8 -6-4 -2 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. Column Height (cm) 2 18 16 14 12 1 8 6 4 2 2 4 6 8 1 12 Displacement (mm) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Rebar Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. - 267 -

Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. Column Height (cm) 14 12 1 8 6 4 2-3 -15 15 3 Hoop Strain (1-6 ) Ductility 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 8. - 268 -

제3절 결과분석 1. 포락선의 평가 수평하중을 받는 시험체의 변위-하중 곡선은 매 반복하중마다의 결과들이 동시에 나타 나므로 전체적인 하중 및 변위 특성을 정확히 판단할 수 없는 단점이 있다. 따라서 시험 체의 변위-하중 이력곡선에서 각각의 반복하중마다 최대변위 점에 대응하는 점을 평행 이동시켜 연결함으로써 포락곡선을 산정하였다. 시험체의 변위-하중 곡선은 그림 6.47과 같다. 25 25 ORC 2 15 15 1 1 Load (kn) Load (kn) 2 5-5 5-5 -1-1 -15-15 -2-2 -25-12-1-8 -6-4 -2 2 4 6 8 1 12-25 -12-1-8-6 -4-2 2 4 6 8 1 12 Displacement (mm) Displacement (mm) (a) ORC (b) ORC + PRC 25 2 15 25 ORC PFRC 2 15 ORC PRC PFRC 1 Load (kn) 1 Load (kn) ORC PRC 5-5 5-5 -1-1 -15-15 -2-2 -25-12-1-8 -6-4 -2 2 4 6 8 1 12-25 -12-1-8-6 -4-2 2 4 6 8 1 12 Displacement (mm) (c) ORC + PFRC Displacement (mm) (d) ORC + PRC + PFRC 그림 6.47 변위-하중 곡선 그림 6.48의 포락곡선 비교를 분석한 결과 반복하중을 작용한 ORC 시험체는 최대하중 도달 후 완만한 기울기로 내력감소를 보였다. GFRP 내력패널 보강된 PRC, PFRC 시험 체는 비슷한 기울기(강성)를 보이며 ORC에 비하여 최대강도가 크게 상승한 것을 알 수 있다. 하지만 PRC 시험체의 경우 최대 강도 도달이후 급격한 강도 저하와 함께 시험체 가 파괴되어 실험이 종료되었다. GFRP 기둥보강재로 보강된 PFRC 시험체의 경우 최대 하중 도달 과정까지 PRC 시험체와 유사한 곡선을 그리며 ORC보다 높은 최대하중에 도 달하였다. 반면 최대하중 도달이후 빠르게 파괴된 PRC 시험체와 달리 완만한 곡선을 그 리며 하중이 감소하였다. - 269 -

Load (KN) 25 2 15 1 5-5 -1-15 -2 ORC PRC PFRC -25-12-1-8 -6-4 -2 2 4 6 8 112 Displacement (mm) - 27 -

* 최대강도는정가력과부가력시기준시험체대비강도비를나타냄. ** 변위비는최대강도시의정가력, 부가력변위를나타내며, 기준시험체대비변위비를나타냄. * 차는비보강시험체인 ORC의최대하중의차를나타낸다. ** 비는 GFRP 내력패널의보강목표인 1kN 증가에대한비를말한다. - 271 -

Energy Dissipation Capacity (kn-m) 3 25 2 15 1 5 OSC PRC PFRC 1 2 3 4 5 6 7 8 Displacement Ductility Factor - 272 -

Accumulated Energy Dissipation Capacity (kn-m) 24 2 16 12 8 4 OSC PRC PFRC 1 2 3 4 5 6 7 8 Displacement Ductility Factor - 273 -

max μ max μ - 274 -

tan tan cos cos - 275 -

- 276 -

- 277 -

- 278 -

Displacement (mm) [CYCLE] [MONO] 3 25 2 15 1 5 5 1 15 2 25 3 15 1 5-5 -1 5mm 1mm 15mm 2mm 3mm -15 5 1 15 2 25 3 4mm Time (sec) 5mm 6mm 7mm 8mm - 279 -

- 28 -

Moment (kn) 7 6 5 4 3 2 1 Displacement (mm) 1 2 3 4 5 6 7 8 9 1 1..2.4.6.8.1.12 Angle of deflection (rad) MONO 9 8 7 6 5 4 3 2 1 Load (kn) Moment (kn) Displacement (mm) -1-8 -6-4 -2 2 4 6 8 1 75 1 6 8 45 6 3 4 15 2-15 -2-3 -4-45 -6-6 -8 CYCLE -75-1 -.12 -.9 -.6 -.3..3.6.9.12 Angle of deflection (rad) Load (kn) - 281 -

- 282 -

3m 3m p 3m 3m p 3m 3m 3m 3 25 18 15 13 14 1 3 8 25-283 -

그림 7.9와 그림 7.1에 건축 강구조 표준접합부를 종류별로 나타내었다. 또한 접합부 의 특징을 정리하여 표 7.2에 나타내었다. 그림 7.9 H형강 기둥-보 강축접합 그림 7.1 H형강 기둥-보 약축접합 - 284 -

- 285 -

Moment (kn) Displacement (mm) 1 2 3 4 5 6 7 8 9 1 1 7 9 6 5 4 3 2 1 Welded Connection FE Analysis..2.4.6.8.1.12 Angle of deflection (rad) 8 7 6 5 4 3 2 1 Load (kn) - 286 -

Moment (kn m)..5.1.15.2.25.3.35.4.45 6 2 5 4 3 Displacement (m) 2 st11 1 st12 st13 st14..2.4.6.8.1.12.14 Angle of deflection (rad) 18 16 14 12 1 8 6 4 2 Load (kn) - 287 -

- 288 -

Moment (kn m)..5.1.15.2.25.3.35.4.45 6 2 5 4 3 Displacement (m) 2 st21 1 st22 st23 st24..2.4.6.8.1.12.14 Angle of deflection (rad) 18 16 14 12 1 8 6 4 2 Load (kn) - 289 -

- 29 -

- 291 -

Moment (kn m)..5.1.15.2.25.3.35.4.45 6 2 5 4 3 Displacement (m) 2 wt11 wt12 1 wt13 wt14 wt15..2.4.6.8.1.12.14 Angle of deflection (rad) 18 16 14 12 1 8 6 4 2 Load (kn) - 292 -

- 293 -

Moment (kn m)..5.1.15.2.25.3.35.4.45 6 2 5 4 3 Displacement (m) 2 wt21 wt22 1 wt23 wt24 wt25..2.4.6.8.1.12.14 Angle of deflection (rad) 18 16 14 12 1 8 6 4 2 Load (kn) - 294 -

- 295 -

- 296 -

mm mm mm MPa N N N mm mm - 297 -

- 298 -

- 299 -

- 3 -

- 31 -

- 32 -

- 33 -

- 34 -

- 35 -

- 36 -

1 Displacemente (mm) [ OSF, RSF ] [ RSF2,RSF4 ] 5-5 -1 1 2 3 4 5 6 7 8 9 1 1 5-5 -1 1 2 3 4 5 6 7 8 9 1 Time(sec) - 37 -

2 15 1 Load (kn) 5-5 -1-15 -2 OSF -1-8 -6-4 -2 2 4 6 8 1 Displacement (mm) - 38 -

2 15 1 Load(kN) 5-5 -1-15 -2-8 -6-4 -2 2 4 6 8 Inter Story Drift (mm) OSF 2 15 Load(kN) 1 5-5 -1-15 OSF -2-8 -6-4 -2 2 4 6 8 Inter Story Drift (mm) - 39 -

- 31 -

2 15 1 Load (kn) 5-5 -1-15 -2-1 -8-6 -4-2 2 4 6 8 1 Displacement (mm) RSF - 311 -

2 15 Load(kN) 1 5-5 -1-15 -2-8 -6-4 -2 2 4 6 8 Inter Story Drift (mm) RSF 2 15 Load(kN) 1 5-5 -1-15 -2-8 -6-4 -2 2 4 6 8 Inter Story Drift (mm) RSF - 312 -

- 313 -

2 15 1 Load(kN) 5-5 -1-15 -2-1 -8-6 -4-2 2 4 6 8 1 Displacement (mm) RSF2-314 -

2 15 Load(kN) 1 5-5 -1-15 -2-8 -6-4 -2 2 4 6 8 Inter Story Drift (mm) RSF2 2 15 Load(kN) 1 5-5 -1-15 -2-8 -6-4 -2 2 4 6 8 Inter Story Drift (mm) RSF2-315 -

- 316 -

2 15 1 Load(kN) 5-5 -1-15 -2-1 -8-6 -4-2 2 4 6 8 1 Displacement (mm) RSF4-317 -

2 15 1 Load(kN) 5-5 -1-15 RSF4-2 -8-6 -4-2 2 4 6 8 Inter Story Drift (mm) 2 15 Load(kN) 1 5-5 -1-15 RSF4-2 -8-6 -4-2 2 4 6 8 Inter Story Drift (mm) - 318 -

- 319 -

제3절 결과분석 1. 포락선의 평가 시험체의 변위-하중 곡선은 그림 8.27과 같이 나타내어 시험체의 하중-변위에 따른 특 성을 분석하였다. 그림 8.27의 (a), (b), (c)에서 비보강 시험체와 보강 시험체는 초기 GFRP 내력패널과 부재와의 유격이 사라지는 지점까지 동일한 거동 양상을 보이다, 유격 이 사라짐에 따라 구조물의 강성이 증가하였다. 또한 강성이 다르게 나타나는 변곡점은 가력변위가 증가하고 패널이 손상될수록 지연되고 강성이 감소하며 나타났다. 2 15 1 Load (kn) 5-5 -1-15 OSF RSF -2-1 -8-6 -4-2 2 4 6 8 1 Displacement (mm) 2 2 15 15 1 1 5 5 Load (kn) Load (kn) (a) OSF+ RSF -5-1 -5-1 -15-15 OSF RSF2-2 -1-8 -6-4 -2 OSF RSF4-2 2 4 6 8 1-1 -8-6 -4-2 Displacement (mm) (b) OSF + RSF2 2 4 6 8 1 Displacement (mm) 그림 8.27 변위-하중 곡선 (c) OSF + RSF4 그림 8.27의 (a)와 (b)를 비교해보면 동일한 단면의 GFRP 내력패널을 보강하였으나 패 널의 가이드 유형에 따라 최대하중의 크기가 달라졌다. 전반적으로 type-2의 가이드가 최대하중 및 정점 이후 뛰어난 강성거동을 보여주었다. 그림 8.27의 (b)와 (c)를 비교하여 2개의 double box형태의 내력패널과 4개의 single box형태의 내력패널의 거동을 비교하였다. 최대하중은 크게 차이를 보이지 않으며 정점 이후의 거동에서 RSF4 시험체가 RSF2 시험체보다 다소 강성이 감소하였고 이는 파괴 과정에서 내력패널의 에폭시 연결부의 파괴로 인한 것으로 생각된다. 전체적인 하중 및 변위 특성을 정확히 파악하기 위하여 하중-변위 포락곡선을 작성하 - 32 -

2 15 1 Load(kN) 5-5 -1-15 -2-1 -8-6 -4-2 2 4 6 8 1 Displacement (mm) OSF RSF RSF2 RSF4-321 -

- 322 -

Energy Dissipation Capacity(kN-m) 14 12 1 8 6 4 2 OSF RSF RSF2 RSF4 1 2 3 4 5 6 7 8 9 1 Displacement(mm) - 323 -

Accumulated Energy Dissipation Capacity(kN-m) 1 9 8 7 6 5 4 3 2 1 OSF RSF RSF2 RSF4 1 2 3 4 5 6 7 8 9 1 Displacement(mm) - 324 -

- 325 -

- 326 -

- 327 -

- 328 -

- 329 -

- 33 -

.2.2.15.15.1.1 Load (KN).5. -.5 Load (KN).5. -.5 -.1 -.1 -.15 -.15 -.2-1.2 -.9 -.6 -.3..3.6.9 1.2 Displacement (mm) -.2-1.2 -.9 -.6 -.3..3.6.9 1.2 Displacement (mm) - 331 -

1.5 1.5 1. 1..5.5 Load (KN). -.5 Load (KN). -.5-1. -1. -1.5-1.5-1. -.5..5 1. 1.5-1.5-1.5-1. -.5..5 1. 1.5 Displacement (mm) Displacement (mm) - 332 -

- 333 -

- 334 -

- 335 -

Load (N) 5 4 3 2 1-1 -2-3 -4-5 -1.2 -.9 -.6 -.3..3.6.9 1.2 Displacement (mm) 1mm.1Hz 1mm 1.Hz 1mm 3.Hz - 336 -

12 9 6 Load (N) 3-3 -6-9 -12-3 -2-1 1 2 3 Displacement (mm) 3mm.1Hz 3mm 1.Hz 3mm 3.Hz - 337 -

16 12 8 Load (N) 4-4 -8-12 -16 5mm.1Hz 5mm 1.Hz 5mm 3.Hz -5-4 -3-2 -1 1 2 3 4 5 Displacement (mm) - 338 -

- 339 -

- 34 -

- 341 -

12 Nondamper Displacement (mm) 1 8 6 4 2 resonant frequency..5 1. 1.5 2. 2.5 3. Frequency (Hz) - 342 -

Inter story Drift ratio (%) 1 8 6 4 2-2 -4-6 -8 1st story Nondamper 1st story Damper -1 2 4 6 8 1 12 14 16 18 2 Time (sec) Inter story Drift ratio (%) 1 8 6 4 2-2 -4-6 -8 2nd story Nondamper 2nd story Damper -1 2 4 6 8 1 12 14 16 18 2 Time (sec) - 343 -

- 344 -

2 15 Displacement (mm) 1 5-5 -1-15 Ground wave Nondamper Experiment FE Analysis -2 1 2 3 4 5 Time (sec) 2 15 Displacement (mm) 1 5-5 -1-15 Ground wave Damper Experiment FE Analysis -2 1 2 3 4 5 Time (sec) - 345 -

- 346 -

- 347 -

Inter story Drift ratio (%) 3 2 1-1 -2 1st story Nondamper 1st story Damper Inter story Drift ratio (%) 3 2 1-1 -2 2nd story Nondamper 2nd story Damper -3 1 2 3 4 5 Time (sec) -3 1 2 3 4 5 Time (sec) Inter story Drift ratio (%) 3 2 1-1 -2 3th story Nondamper 3th story Damper -3 1 2 3 4 5 Time (sec) - 348 -

l l l l - 349 -

l l l l l l l l l l l - 35 -

l l l l l l l l l l l - 351 -

l l - 352 -

참고문헌