ISSN 1226-9000 JES VOL 58 09/2016 미세먼지PARTICULATE MATTER
CONTENTS : ( ) 4? ( ) 14 ( / ) 24 BIG DATA - - ( ) ( ) 36 - - ( ) 47,, -,, ( 32 ) 57 2016 8 86 97
ISSN 1226-9000 JES VOL 58 09/2016 [이슈] 미세먼지 미세먼지 오염의 현황과 문제점 숨쉬기 안녕하십니까? 미세먼지에 대한 오해와 진실 그리고 접근 방법- 대기환경관리의 관점에서 본 수도권 미세먼지 환경 개선 미세먼지PARTICULATE MATTER BIG DATA 그리고 대기오염물질 산정의 패러다임 변화 -도로부문 미세먼지를 중심으로- 특별한 것이 없는 정부의 미세먼지 특별 대책 - 미세먼지 관리 특별대책 세부이행계획 의 한계를 중심으로- 대기 중 미세먼지와 초미세먼지는 모두가 체감하는 문제로 다가왔다. 대기 중 (초)미세 먼지의 농도는 얼마나 높은가? 이를 측정하는 시기, 장소, 대상 물질은 적절한가? 미세 먼지는 얼마나 위험한가? 미세먼지를 발생시키는 주요 원인은 무엇인가? 어떤 대책이 필요한가? 정부는 무엇을 먼저 급히 실행하고, 무엇을 장기적으로 차근차근 준비해야 하는가? 더 나은 대책을 세우기 위해서는 어떤 자료가 더 필요한가? 시민들이 할 수 있 는 일은 무엇인가? 등등 답을 구해야 할 많은 질문이 산적해있다. 이번 호 e-환경논총에 서는 미세먼지의 현황, 원인, 대책, 정부와 시민사회의 역할에 대해서 대기과학 전문가, 교통 전문가, 그리고 대학원생의 분석과 의견을 싣는다. 표지 설명: 중유 연소 발생 미세먼지 마이크로그래프 이미지를 포토샵으로 편집한 그래픽(표지 디자인: 서예례 편집위원)
( ) I. 2016.. 6 3 [1]... 2016.. 2 (EPI) [2]. 20. 180 80 173 /180. (PM2.5) (NO 2 ). OECD [3] PM2.5 2060,. 2010 1 2 5....... 4
II. 2001 10 PM10(Particulate Matter, <10 ) 2015 2.5 PM2.5.. 2014 260 ( 1) 65.6%, (PM10) 8.2%, 1 37.5%.,, [4]. PM2.5 2015 2016 (2015). 2016 1. 2014 (%) 0.02ppm 253 0 100 5 SO 2 24 0.05ppm 254 253 253 0 100 1 0.15ppm 251 2 99.2 0.03ppm 184 72 71.9 NO 2 24 0.06ppm 257 256 168 88 65.6 O 1 0.1ppm 197 59 77.0 257 256 8 0.06ppm 0 256 0.0 3 1 0.1ppm 96 160 37.5 CO PM10 8 9ppm 252 0 100 253 252 1 25ppm 252 0 100 50 /m 3 156 99 61.2 257 255 24 100 /m 3 21 234 8.2 Pb 0.5 /m 3 54 54 54 0 100 Benzene 5 /m 3 31 31 30 1 96.8 :, (2014), 2015.
PM10 PM2.5 < 2>. 2016 PM10 4 71 /m 3 100 /m 3 25 95. PM2.5 5 29 / m 3 50 /m 3 25 90 2016 4, 5 [5]. PM10 20 < 3>, < 1>. 1995 2014, (, ) ( 64 /m 3 ), ( 60 /m 3 )., 1996 1999 2000 [4]. PM10 1998 2001 2002 70 /m 3,. 2007 2008 6 2007 50 /m 3. 2014 2013 7 50 /m 3 ( ) PM10 54 /m 3. 2010 2014 50 /m 3..,.. 2014 / 6 2. (2016 1-6 ) PM10 PM2.5 2016 ( /m 3 ) (100 /m 3 ) ( /m 3 ) (50 /m 3 ) 1 50 7 27 34 2 45 0 23 4 3 64 35 32 47 4 71 95 30 49 5 56 48 29 90 6 46 0 28 10 :, (2016 1-6 ), 2016.
3. PM10 (1995-2014) ( : /m 3 ) :, (2014), 2015. ( ) '95 78 76 86 73 81 49 63 69 '96 72 67 74 76 87 51 63 51 '97 68 70 69 68 72 49 69 43 '98 59 57 59 67 72 49 58 29 '99 66 53 58 65 66 56 55 29 '00 65 53 59 62 63 58 51 52 '01 71 52 71 60 67 57 48 55 '02 76 57 74 69 71 52 53 54 '03 69 61 68 55 59 36 43 40 '04 61 62 67 60 58 46 49 50 '05 58 61 65 58 55 49 48 50 '06 60 68 68 59 54 55 49 52 '07 61 64 66 57 53 52 49 53 '08 55 57 59 51 57 50 45 54 '09 54 60 61 49 48 46 43 49 '10 49 55 58 49 51 45 44 48 '11 47 55 56 47 47 43 44 49 '12 41 47 49 43 42 38 39 46 '13 45 49 54 49 45 42 42 47 '14 46 49 54 48 45 41 41 46 7 1. PM10
4. PM10 150 / m 3 2 PM10 100 /m 3 (PM10) PM10 300 / m 3 2 PM10 150 /m 3 PM2.5 90 / m 3 2 PM2.5 50 /m 3 (PM2.5) PM2.5 180 / m 3 2 PM2.5 90 /m 3 : 14, 2016.7. 8 2014 2, 2015 4. 2015 1, 2015 1, < 4>. III. 1 2. 1 2. 1 2.. 1, 2. 1,,, 2,,. 1. [6] PM10 20-40% 2. 1,.
5. PM10 PM2.5 (2013) PM10(ton/yr) PM2.5(ton/yr) 4,524 3,573 1,955 1,226 81,014 41,606 6,249 4,829 12,103 11,135 15,167 13,953 243 202 310 279 108,942 17,127 15,663 12,681 246,168 106,610 9 :, (2013), 2016. (CAPSS). < 5>. 2013 PM10 246,168 /, PM2.5 106,610 / PM2.5/PM10 0.43 [7]. < 2> PM10 ( ) ( )..,,..,,.,,,... < 3> PM2.5 PM10. PM10 44% PM2.5
15%. PM2.5 40%, PM2.5 22% PM10. 2 12%,,.. 10 2. PM10 (2013, ) 3. PM2.5 (2013, )
IV....... < 6> 3. 1.... 2.., 2.,.,.. 3....... [1] 1 24% 2 29% 11 6.,,, +,, 2 ( / ) ( /m 3 ) ( )
... (MATES- IV) PM 68% [8]. PM. 2012 (WHO) (IARC) 1 [9].. IV. (PM10) 2002 2012. 2016. (PM2.5) 2...,..., (filterable PM). (condensable PM)..,. (HAP)... 12
< > [1], 2016,. [2] Environmental Performance Index-2016 Report, 2016. (http://epi.yale.edu/reports/2016-report) [3] OECD, 2016, The economic consequences of outdoor air pollution. [4], 2015, (2014). [5], 2016, (2016 1-6 ),. [6], 2010,. [7], 2016, 2013. [8] South Coast Air Quality District, 2015, Multiple air toxics exposure study in the south coast air basin (MATES-IV). [9] International Agency for Research on Cancer, 2012, Diesel engine exhaust carcinogenic, Press release number 213. 13
? -? ( ) I.,.... 4 29 KORUS-AQ(Korea US Air Quality study; ) 1) NASA...., NASA,,,. KORUS-AQ 2). KORUS-AQ NASA KORUS-AQ 5 6,.. 7, 8, 14 1) (NASA, National Aeronautics and Space Administration) (NIER, National Institute of Environmental Research) 5, 6, 2) 2016 6 3,,,.
? - 1. (PM10) ( : [ ],?),,., ( 1 ),, NASA,,??..,,.. II.... 1.? (TSP, Total Suspended Particles, 50 m ) (PM, Particulate Matter). PM10( 10 m ) PM2.5( 2.5 m ), ( 2 ). 3) ( :,, ), ( :,, 4) ).,, 15 3) PM2.5 PM1 ( 1 m ),.
? - 2. ( : [ ],?) 16,,.. 2. vs?,.,.,. (Si), (K), (Ca), (Fe),.., 1,, 2, ( 3 ).. 4),.
? - 17 3. (<1 m).,,,,,,. 20-50%. ( : Zhang et al, Geophys. Res. Lett., 34, L13801, 2007) 3.? (1 ), (2 )..,,,,. < 4> 2. (NO, NO2), (SO2),, 2 ( )., (VOCs) 2 ( ). (OH, O3, NO3 ) ( ). 2 1 (60~80%).
? - 4. 2 ( : [ ],?) 4.?.. 30~70%,.,,,, RV,, ( 5 ). ( ). 18 5. 2 ( : [ ],?)
? - Box 1. KORUS-AQ? KORUS-AQ.,..,,.,, 300m.,.? KORUS-AQ NASA,.,,.,.,,.?......??, ( ). 19
? - 5. 300. (PM10, PM2.5) (O3, CO, SO2, NO2), (, www.airkorea. or.kr)..,... 1980.,.,,. NASA KORUS-AQ., KORUS-AQ.... III.?,.,.,... 20
? - 1..,,.,.,...,.,, trend,..,.. 5 KORUS-AQ NASA 9 ( ) 3.,,. 6,..,,.,. 3...,, interboundary transport. 21
? - 2.......,,,.,.,. 3.... KORUS-AQ,. NOAA(, National Oceanic and Atmospheric Administration),..,...,. KORUS-AQ?,?.,.,...,.. 22
? - 4....,.,.?,?,?,?..,,,....?,.., KORUS-AQ,.. 23
( / ) I. 12%, 48%,,.. 2003 12 (, 2009). NASA (KORUS-AQ and MAPS-Seoul).,.,,.,.??. II. 1. 10 (PM10), 24
(PM2.5) 2.5. PM10 PM2.5 (, 2016), PM10 PM2.5.. (PM10) (50~70 ) 1/5~1/7, PM2.5 1/20~1/30.. (WHO) (PM10) (PM2.5) 1987, 2013 (IARC, International Agency for Research on Cancer) 1 (Group 1) (, 2016). 1m 3 ( 1g ) /m 3, PM10 50 /m 3, PM2.5 25 /m 3.,. (, ),. 2., (1 ) (2 ). 2013 1 PM10 12.2, PM2.5 7.7.,. 25 1. 2 ( 2016)
PM2.5 92%. RV(SUV), ( )..., PM10 12, PM2.5 1.8.,,,, 2 ( 1). 2 2 (PM2.5) 60% (, 2016). III. 1., ( ) 2005, 2005 11 10 ( 1 )., 2007 1 26 1. 2 (RSD),, DPF,,,, PMNOx,, (LEZ), DPF,,,, DPF,,,,,,,,,, (R&D), :, 2013
2. 2 2010 ( ) 2024 ( ) PM10( /m 3 ) 46.2 30 16.2 PM2.5( /m 3 ) 33.1 20 13.1 NO 2 (ppb) 26.1 22 4.1 :, 2013. 1, 2015, 2015 10 2 ( 2 ). 2, 1., 2., 3., 4, 5. ( 1). 10 4.55 81%, 7.9%, 9.3%, 1.6%. 2024 < 2>. 2 9 2. ( ) PM10 2012 10%, 2) - - ( ), ( ) ( ) 3 PM2.5 2012 25%, 20%, 15%, PM2.5 60 /m 3. ( - - ( ),,, ), 2013 9,,,,, 6 ( 3). < 3>. 2017 1 7,000 ( 300 ). 27 2. 2010 PM2.5 WHO (25 /m 3 ) 3 70 80 /m 3 2013~2017 ( 13.9.12)., 1) 2017 IV. 1. :? 1
3. (2013~2017 ) 2017 PM2.5 2012 25% PM2.5 60 /m 3 1) 2) - - - - (2012 1,300 ) - - (600 ) - - ( 4 ) - 3) - - 16 6-100 - - 2016-10% - - (20 ) 4) - - 3-2017 5) - - - (, ) - - ( ) - (,, 1,200 ) - - - (400 ) -,, 28 (,, ) - 7) -, 6) -,, - 9) 6 -, 8) -, 2 10) 3 -, :, 2015
2014 2005 NO2 PM10 (PM10 40 /m 3, NO2 0.022ppm), O3. 2, PM2.5 25 /m 3. PM2.5 20 /m 3. 2015 12 < 4> PM2.5 PM10 32.7 /m 3, 44.8 /m 3 30.0 / m 3, 37.9 /m 3 20 /m 3, 30 /m 3. 2 2024 PM2.5 26.2 /m 3., 50%. < 4> 2., 1),, 2) 2 66.5% (DPF) -, 3) 1 87.4%, 4) 112%,, 5) (9 ), 6) (, 2016).. (, 2016 8 1 ) 23~32 /m 3,,.,. 29 4. ( : /m 3 ) 2024 ( ) 2 2 2 PM2.5 32.7 30.0 26.2 20.0 PM10 44.8 37.9 30.7 30.0 :, 2016
? 2. (1) 2,.. 10 2.5 4 64, 64., (PM10) (PM2.5)., ( 50% ).., DPF -. (2) 1 2 1 1. 1, 1), 2). 2,. 1 2. 1,.,,. 2,, regime,. 2 SO2, NOx, NH3, NMVOC 1,. NMVOC,., NASA KORUS/MAPS NMVOC.,.., 30
NO:NO2 95:5 50:50, NOx NO NO2. NO (O3 titration) 2., - -, < 2>. (3) ( ) 2 50%, 80%. 2, (NO3 - ) ( 5 /m 3 ), (SO4 2- ) 31 2. NOx VOCs (J.-H. Woo, 2013)
( 2 /m 3 ). 2,.,. 2. < 3>,.. (4).,., (co-control) (co-benefit).,. 32 3. PM2.5 (Kim, et al., 2016)
,., (INDC). (CCS). INDC 2030 2024 2.. (5) NASA, (MAPS-Seoul/KORUS-AQ). MAPS(Megacity Air Pollution Study- Seoul),. KORUS-AQ ( 4). 3, /. (, 2016). 2 R&D 1.1%,.,.,. 33 4. ( ) 10 (2005~2014) NO2
V.,,. 6 3.,,,,., 2 3 (20 /m 3 24 21 ), 10 (, 15 23 /m 3 26 18 /m 3 ) 2.,,,? 2021 20 /m 3,?,,,,,.,,,. -,., DB,,,. 34
, 2016.4,., 2009,, 25(6)., 2015,., 2016.4,,?, 2013.12, 2., 2016.6, JTBC. Younha Kim, Jung-Hun Woo, et al., 2016.8, Future scenario emission inventory for China by various control policy, IUAPPA Conference, Busan. Jung-Hun Woo, 2013, Integrated Management of Climate Change and Air Quality- Building fundamental basis for GAINS- Korea, The 2nd Int. Workshop on Integrated Approach for Climate Change and Air Pollution, Seoul. 35
BIG DATA - - BIG DATA 1) ( ) ( ) 36 I.. ( / ) (PM10) 33.2(10.0%), (PM2.5) 30.5(14.5%) (NOx) 919.8(30.8%) [1].. -, /...?.,,.,.? Big Data. 1,500, 90%. 90% 1~2, (1 ) Point-to- 1) (, 2015).
BIG DATA - point ( P2P). P2P Big Data.,.. (,, ),. [7],[8],[9], 30~40%, 300% II. 1. COPERT [6] EPA [5]. 2), (NIER) / (Clean air policy support system, CAPSS), CAPSS COPERT.. 3) ( *km/, Vehicle kilometer travelled, VKT)., Interpolation with Gaussian process regression ( Kriging) 40%, [8],[9]. 2.4% Kriging [3],. 4) CAPSS, ( ) VKT [2],. 5), VKT VKT VKT. CAPSS VKT. NIER. VKT. CAPSS,, 37 2) COPERT(Computer programme to calculate emission from road transport), EPA (EPA, Environmental protection agency) (DOT, Department of transportation). 3) : ( ), ={, }, ={,, },, (, ): (, / )* (, km),, :,, :,, ( ), :, : (%),, ( ): ( ) ( / *km) 4) 225,590,,, 6 5,421 2.407%. 6, Database. 5) (2016.08.25.),. -
BIG DATA - -.,,. ( ). /,.. (III) (2013), 25~35km/, 30km. 80%.,,,,. /,,.. 2. ). GPS. P2P. P2P. 6). 99%.. VKT ( ) VKT..,. III. : 38 VKT. VKT., In-vehicle (,,,, ( ), P2P. P2P (Digital tacho graph, DTG). 7) 5, < 1>. 1) P2P Profile, P2P.
BIG DATA - - 39 1. GPS
BIG DATA - - [ 1] : / 962,584. 225,590 4.27,,,. 8) [ 2] : P2P Map matching ( ) 1km/ Profile. Map matching,,. [ 3] : GIS DB.., /. 9) [ 4] : Profile [2],., Profile 1km/,. [ 5] / / / : / / DB, DB. URL(http://58.231.81.229), 2016 12. IV. PM10 NOx (http:// airmiss.nier.go.kr),,. [2] CAPSS Cold start. 1... () 0.992, y=x () < 2> 0.985,.. VKT 1%., VKT 40 7), 73.04 (2,016 GB), 98.2%, 99.9%. (,, ) DTG, GPS. 8) 5,431 0.564%.. 9), DB GIS Miss matching.
BIG DATA - - 2. 41 1. VKT ( : *km/ ) (%) 1,034 63.72 64.94 1.92 3,608 4.26 4.22 0.87 204 3.61 3.63 0.45,. VKT. 2. ( NIER) VKT( *km/ ) 83.5(2012 ), 114.4(2014 ) [3]., 72.6 NIER 2012 13%, 2014 36.5%. < 3> ( PM10) ( NOx) VKT. NIER 26.3%, 29.2%. Cold start 2 NIER 56.9%, 58.4%.,
BIG DATA - - NIER.,, VKT., NIER, VKT. NIER.,., VKT 0.961.,. 3.,,,. PM10 NOx 42 3.
BIG DATA - - 43 4.
BIG DATA - -.,,.,. VKT 619.0( *km/ ) 2015 7 2,055.5 30.12km. ( ) 39.8km 9.68km(32.19%).,,,. PM10 NOx (ton/ ) 5.1 202.0, 6.74 266.96. NIER 20.3 29.3%., VKT 1.6 NIER 1.5 1.7. VKT 0.94. CAPSS. 44 5.
BIG DATA - - V. 2015 PM10 NOx (ton/ ) 6.7 267. Cold start,. 2 NIER 2013 PM10 NOx < 2>. ( NIER 2014 2015.),, PM10 NOx (ton/ ) 306.6 2,344.6 7.9 21.5, (%) 2.2 11.4. 2, PM10 NOx 299.9 2,077.7 5.9 12.6, 4.3 12.6%. PM10 5%, NOx 10%., 2015 (km/ ) 39.8, 2013 39.7. NIER 2014 VKT 114.4 * / [3]. 2014 2015 2013. VKT,.,. Cold start,,., GIS. DTG. 45 2. (ton/ ) PM10 NOx ( ) 333.0 2,988.0 NIER (2013) ( ) 33.2 910.3 (%) 10.0 30.5-299.9 2,077.7 ( - + ) 306.6 2,344.6 1 ( ) 6.7 267.0 (%) 2.2 11.4% ( - +2* ) 313.4 2,611.6 2 (2* ) 13.5 533.9 (%) 4.3 20.4
BIG DATA - - [1] (http://airmiss.nier.go.kr). [2], 2013, (III). [3], 2015, (II): [4],,, 2009,,, 6(2), 69-77. [5] California EPA, 1996, Methodology for estimating emissions from on-road moter vehicles. [6] EEA, 1999, Atmospheric emission inventory guidebook 2nd edition. [7] Selby, B. and Kockelman K.M., 2013, Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression. Journal of Transport Geography, 29, 24-23. [8] Shamo, B., Aza, E., and Membah, J., 2014, Linear spatial interpolation and analysis of annual average daily traffic data. Journal of Computing in Civil Engineering. [9] Zhao, F. and Park, N., 2004, Using geographically weighted regression models to estimate annual average daily traffic. Transportation Research Record, 1879, 99-107. 46
- - - - ( ) I. : 2016 4 2016. /. < 1> 4. (PM10 0~30, PM2.5 0~15) 4 21,. (PM10 81~150, PM2.5 51~100) (PM10 151, PM2.5 101 ) 4 (9,10,22,26 ) 2 (23,24 ). 22 (PM10 31~80, PM2.5 16~50), (WHO) (PM10 50, PM2.5 25 ). 5 10 1), 7 1. / / /. 2),. 47 1), 2016.5.10.,,. 2), 2016.07.01..
- - 1. 2016 4 PM10, PM2.5 PM10( /m 3 ) PM2.5( /m 3 ) 4/1 60 24 4/2 67 32 4/3 40 24 4/4 26 11 4/5 52 18 4/6 63 29 4/7 34 20 4/8 70 36 4/9 109 53 4/10 128 68 4/11 49 21 4/12 59 27 4/13 57 30 4/14 59 31 4/15 55 26 4/16 54 25 4/17 48 16 4/18 67 23 4/19 46 20 4/20 65 30 4/21 26 15 4/22 83 48 4/23 210 43 4/24 153 28 4/25 78 24 4/26 81 31 4/27 54 19 4/28 57 20 4/29 64 27 4/30 76 34 48 : (www.airkorea.or.kr)
- - II. / 1. /. (PM10) 1/5~1/7 10,,. (PM10) 1/4 (PM2.5). ( ),.,,,,,. 3) (Global Burden Disease) 2010 320. 2 3000 (, 2016. ). / (IARC) 2013 10 1 (Group 1).(< 2> ) 2.,? (PM10) 100µg/m3, 50µg/m3 (PM2.5) 50µg/m3, 25µg/m3.. (WHO) 2. 2~2.5, 2 2.5~10%. < 1> 2010 49 2. (IARC) 1 (Group 1),, 2A (Group 2A) DDT, 2B (Group 2B), 3 (Group 3), 4 (Group 4) : (2016),.,? 3), 2016.04..,?, 22~23.
- - 3. WHO PM2.5( /m 3 ) PM10( /m 3 ) 1 35 75 70 150 15% 2 25 50 50 100 1 6% 3 15 37.5 30 75 2 6% 10 25 20 50 : (2014), 50 1. 2010,... (PM2.5) ( ) (1 ) 15 /m 3, 12 /m 3, 15 /m 3, 10 /m 3, 8 /m 3 25 /m 3., WHO. 10.,.,.,.( (8 30 23:40) 22 /m 3. WHO.)
- - III. / 1..,,,,,., (1 ) (2 ) (, 2016). 2013 12 <2 > 1 ( ),, 2. 2015 12 <2013 > CO 58%, NOx 30%, PM10 11%, PM2.5 14%. CO 9%, NOx 16%, SOx 24%., ( 51% ), 1 2. 4),.. 6, 7 20. 4 23 210µg/m 3. / 2 ( ). 2. : ( ) 2 2014 3 15 15 2. 2 1997 17.? (PM10) m 3 180 ( ), 80. 5) 2014 (APEC) 2. (PM2.5) 55%. 6) / 51 4), 2015, 2013, 15~17. 5), 2014.3.16. 17 2,,. 6), 2014.11.17. APEC 2,.
- -. 7) 2016 4 23 (210µg/m 3 ) /? 2. 2.. 1988, 2002 2002, 2010 G20 2012.,. 2. 2002 2. 2 ( : 5/30~31, 6/12~13, 6/24~25 2002 ), 22.3%, 5.5%, 2.4%. 97%, 28%, 6%. 8) 2-2002 - 2. (CO, NO2, SO2, PM10, O3) 2 3 3~28%, 1999 2001 2003 2002. 16 2.. (3 ) 44.9%, 65 47.3%. 2. 9). 2013 800 93. 82.5. 10) 2. 5 10,. 1, (WHO) 2014 700 52 7), 2015, 2013, 15~17. 8), 2007., 23 4. 9), 2005. 2-2002 -,. 10), 2013. &, 173.
- - (, 2016. )... 2. 3. : 53.. 30 10 2025 (8 : 1 2 / 1 2 / 1 2 / 1 2 ) (2 : 1 2 ). 10 3,345MW. 2021 20, 20 < 4> < 5> 16,100MW, 10 6. 2014 (Daniel Jacob), 1,100. (370 ), (330 ), (150 ), (120 ), (120 ). 11) 2021 20, 2021 1,900. (53 ) 800. 12) 53 4. ( ) (MW) 2 2,040 2 2,100 2 2,000 1 350 2 1,190 GS 2 2,000 11 7,680 : (2015),, 11), 2015.,, 36. 12), 37~38.
- - 5. ( ) (MW) 2 1,160 1 1,000 2 2,080 2 2,080 2 2,100 9 8,420 : (2015),, 6. PM10 PM2.5 ( : /m 3, %) PM10 PM2.5 1 4 7 10 1 4 7 10 54 1 121.7 83.3 83.4 117.8 93.4 63.6 61.9 101.4 1 3.6 17.1 17.6 21.5 3.5 17.0 17.5 20.9 3 21 21 18 4 27 28 21 : (2016), :. 2016 ( ) PM10 3~21%, PM2.5 4~28%. 13) < 6> 4 7 10.. 13), 2016. :.
- -. 14) 2015 50~70km,. 15), ( ).. 10 9.,. 100%. 2 15 8. 8 LNG..... IV. 2016 6 4 2025.. 16)..,,.. (, )..,.... 55 15), 2015.. 16),2016.6.5. 2025,.
- - < >, 2016, :., 2014,. _, 2015, 2013., 2016,,., 2005, 2-2002 -,., 2007,, 23 4., 2016,., 2013, : DB., 2015,., 2013, &, 173., 2016,.,? _, 2014, 2 56 < >, 2014.3.16. 17 2,. (http://news.khan.co.kr/kh_news/khan_art_view. html?artid=201403161436561&code=970205#csidxbcb8f8d11ff911dba07f7a852e5a523), 2016.5.10.,,. (http://news.chosun.com/site/data/ html_dir/2016/05/10/2016051001466.html), 2014.11.17. APEC 2, (http://visitbeijing.or.kr/article. php?number=9674),2016.6.5. 2025,. http://www.yonhapnews.co.kr/bulletin/2016/06/05/0200000000akr20160605053100085.html
,, -,, 32,,,, 6.,,,.,,. 2015 9 32,,,,. (2015.9.-2015.12.) e (JES) 57. (2016.2.-2016.4.). -
,,,, 32-8 2016 2 18 ( ) (, ) ( ), ( ) ( ) 58 : 2007. 2013, 2015 ( ). 2016 2 (1 ). (T), (C), (S), (I).,,.. GNI(Gross National Income) 4 1.,, 2012. : ( ).,,, ( ) 70%..., 2011~2012
,,,, 32 -. 2013... :... 2008 45% 2014 55%., ( ).,,., 1 4. ( 901 171 ). 4.. 2014 5.5% OECD 11.5%. ( + ). 2014 5.5%, 2017 6.6%, 2030 10.0% 11.1 2015 (20.5 ) : KDI, 2015 ( - ).,..,,.., 86,..,.. 2016 8 8., 59
,,,, 32 -...,. 2030., 2013 120, 60, (2014 ) 27, 30., ( ),, ( ).., ( ), ( ),., OECD. 2030 10%,.,.. :..,. DTI, LTV.. 60 :. 5.5%, 11.5% OECD
,,,, 32-9 2016 2 25 ( ),, ( ),, 92 2015 ( ) ( ) 61 : 2013 80%,,. 2013 1971 2. (,, ),,,,,,,. (CO2) 2/3. 1 C 1986 ~2005 3.7 C. 2 C,. 2 C 2,900 1,900 1,000... : 2011.,.. 35%,..
,,,, 32 - ( ), 1), 2), 3) (carbon sinks), 4). : 2016. 2 C 2 C, 1.5 C. UN,. (no back-sliding) (progressive principle),. 2.7 C 1.5 C. 2014 95.2%, 33.1%. (CO 2 ) 7 OECD 4. 2012 1990 2.3.. 2030 37%. 2016 German Watch 1% 58 54 (German Watch 1-3 4 61 61 57 ).. :,. 1880 2012 133 0.85 C, 1901 2010 110 19cm.,,......,.. 2015 2,500.. 62
,,,, 32-17 2 372ha 40... :. 1992 (UNFC- CC). 1997. 2015 2100 1.5 C. 1997,.. 2030 2005 32% (Clean Power Plan), 154 (American Business Act on Climate Pledge). 2020 2030, (INDC) 2030 1990 40%., 2015 10. UN.. 20. 6,000-10,000. 1 2, 1 0.8..,, : 5, (ajenda). 1), 2), 3),..,.,..,... :... 63
,,,, 32 -,.,.,, (passive house).,.,... :..,,...,.,,.., :. NGO...,. ( 32 )... ( 32 ) 2 64
,,,, 32 -.,..,,. 65
,,,, 32-10 2016 3 3 ( ),,? ( ), : ( ) ( ) 66 :..,,,. ( )..,.. (weak sustainability), (strong sustainability)..... :,, 3.,,. 50
,,,, 32 -.. 4. 1967 (Tellico),. 6 1973 (Snail Darter). 1973 (Endangered Species Act), 1978. 1979..,.., KTX, 4,,.,. :....,. 2100. 1, 2. 2 1. (time preference). 1 2.,. :...,,,. :,...,. 67
,,,, 32 -.,.,.,,,..,,..,., 99%.. 1970. :..... :.,, (Fitness),.,.,, 3E(Economy, Environment, Equality),. ( 32 ) (basic needs), ( ).. ( 32 ). 68
,,,, 32 -...... ( 32 ). :., ( ),. ( ) ( ). ( 32 ),. 69 :...
,,,, 32-11 2016 3 10 ( ), (, ), ( ) ( ) 70 : (Eurasia) 40%, 74%, GDP 60%.,.,.,, ( ),, ( ),, ( ). :.. ( : - ) 11,000km 18,000km, 25-30, 36. 7,200-11,000 3,400-5,000...,.,,. :
,,,, 32-30. 500-600......... : (globalization) 1. Blue Banana,,, BESETO. TGV 1~2 (Metro Nation). 500km 1... : (One Metropolitan Korea) Asian Hub-City Nation (AHN).,. 3,., P. KTX KTX. (One Metropolitan Korea) KTX KTX. (One Metropolitan Korea) KTX. (CBD). AHN 5 : Asian Hub-City Nation (AHN) 5. P KTX, - KTX, KTX, KTX 71
,,,, 32 - KTX Business Park.\ :.... ( 32 ). ( 32 )., ADB, EDCF. KTX : KTX, KTX KTX, KTX., ( 32 ) KTX,... :.. ( 32 ) AHN 5 KTX, KTX. KTX (One Metropolitan Korea),. 72
,,,, 32-12, 2016 3 17 ( ),, ( ), ( IMC ) ( E&D, ) 73 (trend) :.,. (emerging trend), (megatrend).. 10. 1960 1990 10., IBM,,..., 2005,,,.. 1......,. 10 :. 2007
,,,, 32-10 1), 2), 3), 4), 5), 6), 7), 8), 9), 10)...,.,.,.,. : 10,.....,..,.,.,.. 21 20. 21.,...,,.,. :,,..,,,,,.,,,. 74
,,,, 32 -. 19. (,,,, ).,,.,.,., ( ), ( ),,, ( ) ( ). :,,,.., 21..,,.,.,,,,,.,,,,,,.. 20..,,,,..,,,,,,,. :,.,., - -,,.,,..., 7 75
,,,, 32 -. :. ( 32 ),. ( 32 ).,...,. (how) (what)...,.,. ( 32 ) 10-20,.,.,. :...,....,... 76
,,,, 32-13 2016 3 24 ( ), ( ),, ( ) ( ) 77 :. 19 20 1.0,,,.. 20 2.0,.. 20 3.0,.,,,,. 21,. 160. 19, 20,,. 20,. 21 :,,,,.,,, 1,000
,,,, 32 -,,,,. 21..,,.,.. (Garden by the bay),,.,.,,. (Brooklyn Bridge Park) - (Millennium Park). :..,....,,.,,,.. ( ) :., ( ),.,...,,...,., ( ).,. 78
,,,, 32 - :.... 2...,,,,,,,,.,,,.,.. :...,.. 1,..,,,.,,,.. :... 1,700,... 79
,,,, 32 -,. : ( 32 ).,,. (social mix),.... ( 32 ) 30%.. ( 32 ). -. ( 32 ). :.., 100..,,,,.,,,,. ( 32 ). 18., 80
,,,, 32 -.,. 81
,,,, 32-14, 2016 4 7 ( ) ( ), 21 (, ) 82 : 2 1980 1945-1979.,,,,.,,. 1970-90. 2008.,.,,..... (John Rawls),,. :. OECD, IMF,. OECD 10 ( 10% 10% ) 1980 7 2013 10., 10. 10 8.4, 10.1. OECD.
,,,, 32-2014 IMF. Piketty 21.,,,.. :,.,., OECD IMF...,. OECD 20% 20%.,..,,... IMF OECD. 1990 75% 2013 67.1%. 2008-2013 11% 2.5%.. 10 75%.,., 81%.,... Piketty,, IMF Lipton. :,,............ 83
,,,, 32 -,. 2013 67.1% 3 2,,. Piketty,.. ( 32 ) 50%. (22 ).,. ( 32 ). SH ( 32 ) /.,.,. ( 32 ).,.,... *,.. *, (gses. snu.ac.kr- - ). 84
2016 8
2016 8-1 - (. )....,,,.,..,.,., 62.4%,.,,..,.,, 87.7%,.,.,,.,..,,. 86
2016 8 (. ).,.. - -.. 1), 2), 3).,,,,.,,,.,,,...,.,..., ;, ;,.,,,...,. 87
2016 8 (. ) 2000.,..,..,.,..,.,.,,. 1.01, 3,600 /.,., 1.58m. 95% 1.51m 1.65m, 99% 1.49m 1.67m.. 2.08m, 2.08m.,.,. 88
2016 8 (. ),. (,, ),. 2010. (OLS) (Spatial Lag Model) (Spatial Error Model), (General Spatial Model) (Geographically Weighted Regression). GWR.., (evidence-based).,, -,. 30km/h 10% 3.3%, 60km/h 10% 10%.. - 60km/h (%) (%). 65,.,. 60km/h, 30km/h, OECD(2016). IT. 89
2016 8 : (. ),....,..,,., 6, 6,.,,.,.,.,.., (+),.,, 6, 6. ( ).,,.,.,. 90
2016 8 - - (. ) -,.,..,.., (,,, ),.,.,,.,.,. Moran s I LISA,,,,,.,.,.,., 1/3,.,,,.,,,.,,,.,,.,. -.,,.,,. 91
2016 8 Social-ecological Memory in Korea s Traditional Village Landscapes: Ethnographic and Spatial Approaches (. ) In nurturing resilience insocial-ecological systems (SESs), memories of ecosystem stewardship practices that are retained by actors of SESs referred to as social-ecological memories (SEMs) play vital roles, particularly relevant in the face of change. My dissertation investigates the ways in which SEM is created, mobilized, and manifested to cope with disturbances and changes by employing various social and ecological resources while maintaining the system s identity, also referred to as resilience. It proposes SEM as a person-practice-place complex with crucial individual components. In other words, SEM that nurtures socialecological resilience involves (1) memory carriers as the primary agents of SEM (person); (2) ecosystem stewardship practices based on local observations and experiential knowledge that has undergone a learningby-doing process (practice); and (3) physical sites in which the person has experienced and learned through practice about ecosystem management, complex systems thinking, and the link between nature and humans. In this regard, my research explores the characteristics of each indicator of SEM with individual cases concerning Korea s traditional village landscape (KTVL) and highlights their implications in the context of socialecological resilience. Landscape here is understood as a unit of SES that is significant for its adaptive qualities. This adaptation is a feedback loop comprising the potential of the land and the ways in which humans make a living from it based on their knowledge systems and cosmologies. Additionally, I focus on traditional ecological knowledge as a type of SEM that has undergone vigorous trial-and-error over time, because in certain circumstances there is a reluctance to innovate and adapt in the face of change within an SES. In studying SES concerning KTVL, I use both autobiographical and historical memories as sources for analyzing the SEM. For instance, in Chapter Three, I use Park Wan-suh snovel Who AteUp All the Shinga? as an example of autobiographical memory to analyze aspects of ecoliteracy and place attachmentas reflected in SEM. Ecoliteracy is defined as ecological knowledge with regard to the names of living and physical components, practices of the resource management system, and landscape management systems. Worldviews and cosmologies that are closed related with person-place attachment are also delineated. These observations exemplify how memories of person-practice and person-place interactions are manifested in forms of ecoliteracy and place attachment. The study also shows how SES in relation to KTVL is highly influenced by village landscape management practices within a watershed. In Chapter Four, I explore the role of SEM in fostering the adaptive capacity of a community through its synergy with other sources of resilience such as leadership, and with cross-scale and cross-level interactions. The result of ethnographic study conduced in a rural area in South Korea indicates that SEM concerning village landscape configuration is reinforced through land use changes and scale-related issues brought about by top-down policy processes. Although the evidence used here focuses on villagers attempts to cope with flood damages, it demonstrates the importance of SEM in allowing for community-based resilience practices. In Chapter Five, I draw on historical records as types of historical memory to define the social-ecological identity of KTVL with emphasis on Korea s traditional village grove and to assess the current spatial identity of the landscape. With the analyzed spatial identity, I was able to locate potential traditional village grove sites in KTVLs that are not in the current governmental data. Although cognitive dimensions of SEM highlight the place-based values of physical environments, based on an SES framework, this dissertation claims that person-practice-place dynamics are also manifested through the spatial characteristics and spatial resilience of a place. It concludes that person-practice-place interactions are central to SEM, which plays a critical role in allowing for ecosystem stewardship in various regions. Institutions to support SEM-based stewardship activities and conservation strategies to protect physical sites in which SEM is accumulated and stored are needed for the maintenance, transmission, and mobilization of sources of resilience. 92
2016 8 (. ) ( )...,......,. 42 156 90% 10.,.,.. 93
2016 8 (. ).,. 1.,,.,.,,,,.,.,, 3 6 (,,,,, ),,.,..,,,..,.,,,,.,.,.,,,...,,,. 94
2016 8 (. ),..,.,.. Mesoscale Microscale.., Mesoscale Microscale.,., Mesoscale, Microscale.,,,,,. Mesoscale Microscale... 4.,, EPS,. Mesoscale,.,,,,. Hazard. 5, 4 Mesoscale. (1 ), (2 ), (3 ).., 2050. EPS,. Microscale, 3., 5. (1 ), (2 ), (3 ). Risk1, Risk 2, Risk 3. Risk 1, Risk 2 Risk 3. EPS Risk 1, Risk 2, Risk 3. Risk 95
2016 8 1,3, Risk 2.. Microscale Mesoscale. Mesoscale, Microscale,. Mesoscale, Microscale. Risk 1, Risk 2, Risk 3. Risk 1, Risk 2 Risk 3,.. 2,,..,,,.. 96
2016 8 - - - Solar Developers Losses due to Sunshine Duration Shortfall and Marketability of Sunshine Insurance: a Loss Distribution Approach : TheEffect of Land Transaction Amount with Foreign Investors on Housing Price -Focus on Chinese Investors in Jeju Island- : - - The Policy Mobility of the Korean U-City model: The case of Songdo as the benchmark for the Clark Green City Project in the PhilippinesPhilippines - - - - - Characteristics of Kampung Upgrading Programs in Indonesia - 97
2016 8 : : 1 : : 1 :,, People, plants, place & process: a landscape ethnography through the gardens of an urban village, Kaemi-Maul, Hongjae-dong, Seoudaemun-gu, Seoul. Kore 98
58 [Vol. 58] 2016 09 30 1 220 212 http://gses.snu.ac.kr/e_jes.html