<313920C0D3C1BEBDC42DB1E2C6C7C0FBC3FEC7FC20B0A1C0AFC0FCC3BCB8A620C0CCBFEBC7D120BCD2C7FCC8ADB5C820C0AAC5B2BDBC20C0FCB7C2BAD0B9E8B1E220BCB3B0E82E687770>

Similar documents
DBPIA-NURIMEDIA

04 김영규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct , EBG. [4],[5],. double split ring resonator (D

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

04 박영주.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond

11 함범철.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 27(1), ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

<313920C0CCB1E2BFF82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep GHz 10 W Doherty. [4]. Doherty. Doherty, C

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep [1],[2].,.,, [3],[4]., 4 MI- MO(Multiple Input

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 26(4),

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

DBPIA-NURIMEDIA

ÁÖÀçÀ² Ãâ·Â

PCB ACF 77 GHz. X,,.,. (dip brazing), (diffusion bonding), (electroforming),, [1],[2].. PCB(Printed Circuit Board), (anisotropic conductive film: ACF)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 27(9),

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep [1]. RFID.,,,,,,, /,,, (,,,, ) [2] [4].., ( 99

이 발명을 지원한 국가연구개발사업 과제고유번호 부처명 방송통신위원회 연구사업명 방송통신기술개발사업 연구과제명 안전한 전자파환경 조성 주관기관 한국전자통신연구원 연구기간 ~

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月 (a) (a) Frequency response (b) (b) Corresponding pole-zero diagram 그림 1. Fig. 1. Characteristic of multi-band filte

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

<30332DB8B6C0CCC5A9B7CEC6C4B9D7C0FCC6C4B9E6BCDB28B9DABFF5C8F1292E687770>

실험 5


(b) 미분기 (c) 적분기 그림 6.1. 연산증폭기연산응용회로

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

<37305FB1E8B1D4C8AF2DC3CAB0EDC1D6C6C4BFEB20BCB1C7FC20C0CCB5E628C7D1B1DBBACEBAD020BFB5B9AEBCF6C1A4292E687770>

PCB PCB. PCB P/G de-cap [2],[3]., de-cap ESL(Equivalent Series Inductance) [3],. P/G [4], P/G. de-cap P/G, PCB.. 단일비아를이용한 P/G 면공진상쇄 2-1 P/G 면공진현상 PCB

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 12, Dec 그러나 eloran 송신 안테나는 매우 넓은 영역을 차지한 다. 예를 들어 미국에

. /. / 2-way / Corporate, 2-way / /,. Corporate / 1/4, 6 18 GHz 3, Corporate. (a) Corporate (a) Corporate power combining structure (b) (b) Spatial po

07 최운성.hwp

박선영무선충전-내지

03 장태헌.hwp

4-노승환KICS hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

Microsoft PowerPoint - 1강 pcb발표 & OrCAD.PPT

Small-Cell 2.6 GHz Doherty 표 1. Silicon LDMOS FET Table 1. Comparison of silicon LDMOS FET and GaN- HEMT. Silicon LDMOS FET Bandgap 1.1 ev 3.4 ev 75 V

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1), IS

28 저전력복합스위칭기반의 0.16mm 2 12b 30MS/s 0.18um CMOS SAR ADC 신희욱외 Ⅰ. 서론 Ⅱ. 제안하는 SAR ADC 구조및회로설계 1. 제안하는 SAR ADC의전체구조

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 12, Dec 또한, 최근 위성통신은 점차 많은 데이터량과 주파수 활용문제로 인하여 Ka 인 초고


DBPIA-NURIMEDIA

PowerPoint Presentation

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 28(5),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

09 남형기.hwp

Session B2 : 3:30 ~ 5:00 Room 203 7

Microsoft Word - Lab.7

팬도캐드소개

04 최진규.hwp

(b) 연산증폭기슬루율측정회로 (c) 연산증폭기공통모드제거비측정회로 그림 1.1. 연산증폭기성능파라미터측정회로

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 30(7),

.4 편파 편파 전파방향에수직인평면의주어진점에서시간의함수로 벡터의모양과궤적을나타냄. 편파상태 polriion s 타원편파 llipill polrid: 가장일반적인경우 의궤적은타원 원형편파 irulr polrid 선형편파 linr polrid k k 복소량 편파는 와 의

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 26(5),

< 목차 > Ⅰ. 연구동기 1 Ⅱ. 연구목적 1 Ⅲ. 연구내용 2 1. 이론적배경 2 (1) 직접제작한물질의기본구조 2 (2) 회절격자의이론적배경 3 (3) X-선회절법-XRD(X-Ray Diffraction) 3 (4) 브래그의법칙 (Bragg`s law) 4 (5)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

¼º¿øÁø Ãâ·Â-1

<343420BFA9C1D8C8A32DC0CCB5BFC5EBBDC520B1E2C1F6B1B9BFEB20B1A4B4EBBFAA2E687770>

1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

Microsoft Word - Lab.4

Microsoft Word - KSR2015A135

½½¶óÀ̵å Á¦¸ñ ¾øÀ½

PCB EMI,. LDWS..,. PCB.. LDWS,, Windshield. 1 LDWS,. PCB., (rise-time),, 5 40 (db/decade),. PCB 10, EMI PCB. Tool, EMI., Antenna. Source,,., EMI.. 제품구

DBPIA-NURIMEDIA

<313120B1E8B9AEC1A42DBEE7B1D8BBEAC8AD20BECBB7E7B9CCB3AA20B1E2B9DDC0C D20C6D0C5B0C1F620B1E2C6C72E687770>

Microsoft PowerPoint 상 교류 회로

<333920C3D6BCAEBFEC2DB4C9B5BF20C0CEB4F6C5CDB8A620C0CCBFEBC7D12E687770>

09권오설_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

<323120C3A4B1D4BCF62DC0FDC0FCBCBEBCADBFEB20582DB9EAB5E520B4EBBFAA20C6D0C4A120BEEEB7B9C0CC20BEC8C5D7B3AA20BCB3B0E82E687770>

<303920C1A4C7D7B1D92DC0FCBFF820C0E2C0BD20BFB5C7E2C0BB20C1D9C0CCB1E22E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun , [6]. E- [9],[10]. E- 3D EM(electromagnetic),,

<303620B1E8BAB4BFEC2DC0DAB5BFC2F720C5EBBDC5C0BB20C0A7C7D120B1A4B4EBBFAA20C4BFB3D8C5CD20C6AFBCBA20BFACB1B82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 26(2),

KAERIAR hwp

Transcription:

한국산학기술학회논문지 Vol. 10, No. 7, pp. 1542-1548, 2009 구자경 1, 임종식 1*, 안달 1 1 순천향대학교전기통신공학과 Design of Miniaturized Wilkinson Power Divider Using Substrate Integrated Artificial Dielectric Jakyung Koo 1, Jongsik Lim 1* and Dal Ahn 1 1 Department of Electrical and Communication Engineering, Soonchunhyang University 요약본논문에서는에대하여기술한다. 기판적층형가유전체전송선로는유효굴절률이표준형보다증가하여전송선로의선폭과길이를짧게하는데, 이를전자파회로에응용하여회로의소형화효과를얻을수있다. 본논문에서는다수의비어홀을가진기판적층형가유전체구조를효과적으로시뮬레이션하는방법을제안하고, 이를회로소형화에응용한사례를보이기위하여기판적층형가유전체를이용한소형화된윌킨슨전력분배기를설계한다. 예로써 2GHz대의윌킨슨전력분배기를설계, 측정한결과가제시되는데, SIAD 구조에의한유효굴절률의증가로인하여표준형회로와비교하여동일한전기적특성을유지하면서도크기가 32% 감소되는결과를보인다. Abstract This paper describes a size-reduced Wilkinson power divider using substrate integrated artificial dielectric(siad). SIAD transmission lines have increased effective refractive index, so the line width and length are reduced from those of standard transmission lines. Therefore the "size-reduction effect" is achieved if SIAD lines are applied to high frequency circuits. An efficient simulation method is proposed for SIAD lines which have an enormous number of via-holes. A 2GHz Wilkinson power divider is designed and measured using SIAD transmission line as an example of application. The size of the fabricated divider is reduced by 32% due to the increased effective refractive index of SIAD, while the performances are maintained similarly. Key Words : Artificial dielectric, SIAD, Effective refractive index, Wilkinson power divider 1. 서론 적층형가유전체구조 (Substrate Integrated Artificial Dielectric, SIAD) 는서로분리된두개의유전체구조를하나로합침으로써, 이에대한효과들로인하여회로의사이즈를감소시키는데중점을두고있다. 결과적으로, 두개의유전체에서생기는응답특성과, 각각의유전체에서생기는응답특성의결과로부터유효성분들을추출해낼수있다. 적층형가유전체구조는 Kock, Chon, Collin 과 Cheng과함께오랜역사 (1940~1960년대) 를지니고있고 [1-4], 대부분안테나레이돔들을위한경량의부피측정렌즈들을제공하는것을목표로하고있다. 적층형가유전체구조는연구초창기에정밀제작이가능한회로기판의제작상의크기에따른제약과복잡한공정때문에응용분야가제한적이었다. 그러나비교적크고복잡한회로기판의정밀한제작이가능하게되어이제는마이크로파대역에서의새로운구조가제안되기에이르렀다 [5,6]. SIAD 전송선로는윗층유전체기판의마이크로스트립전송선로와아랫층유전체기판에집중적으로배열된비어홀 (via-holes) 에의하여전체유전체기판의유효유전율과투자율이변하여, 결과적으로두물리량의곱으로표현되는유효굴절율이증가하는특성을가지고있다. 따라서물리적으로동일한길이를갖는전송선로라고하 * 교신저자 : 임종식 (jslim@sch.ac.kr) 접수일 09년 05월 16일수정일 09년 07월 03일게재확정일 09년 07월 22일 1542

여도전기적으로길이가크게증가하므로회로의소형화에큰역할을할수있다. 본논문에서는이러한특성을이용하여대표적인무선통신용회로가운데하나인윌킨슨전력분배기에대하여 SIAD를적용하여회로쉬소형화를얻어내고그결과를제시하고자한다. 이과정에서매우복잡한 SIAD 구조의효과적인시뮬레이션기법과그결과에대해서도함께소개하고자한다. 2. 적층형가유전체구조의전송선로 그림 1은적층형가유전체구조를이용한마이크로스트립전송선로를보여주고있다. 적층형가유전체전송선로에서는선로주변의아랫면기판에다수의비어홀이존재하고, 이비어홀은가장바닥면의접지면과서로연결되는도금면을포함하고있다. 이구조에서윗층기판의상면에는전송선로의신호선패턴이구현되고, 윗층기판의아랫면도체층은제거된다. 그리고아래층기판의경우상면도체는제거되나하면도체층은마이크로스트립전송선로의접지면도체층을위하여남겨진다. 이때아래층기판의유전체에무수히많은금속비어홀이주기구조를형성하며일정간격으로배열된다. 적층형가유전체구조에서비어홀은여러가지유효유전율 ε과유효투자율 μ의값을얻기위해구조적치수들 ( 격자상수, 직경, 높이, 그리고메탈의두께 ) 로설계가된다. 일정간격을의미하는격자상수 p는자유공간에서파장의길이보다크게작은것이좋은데보통 p λ g 와 p <λ g/50의조건을만족할때가좋다 [5]. 적층형가유전체전송선로구조는평면형전송선로구조의일종인데, 그림 1에보인바와같은선로제작을위해아래층기판의경우에레이저드릴공정과도금공정이필요하고, 두층의유전체기판을강하게압착하여하나의기판구조로만드는공정이필요하다. 본연구에서는실제로제작및측정을위하여유전율 (ε r) 이 2.2이고윗층기판의두께 (h1) 와아래층기판의두께 (h2) 가각각 0.127mm, 0.7874mm인기판을사용한다. 격자상수와비어홀의크기에따라다양한특성이가능한데, 본연구에서는서로다른치수를가진아래층기판을이용하여각특성을비교한다. [ 그림 1] 적층형가유전체마이크로스트립선로구조 이층유전체기판과비어홀구조 옆부분단면도 3. 적층형가유전체구조의동작원리 이제그림 2를이용하여 SIAD를이용한마이크로스트립전송선로의구조및모델링과정을설명하기로하겠다. 그림 2 는마이크로스트립신호선 ( 제 1기판상면 ) 에흐르는무선고주파전류와자기장분포를, 그림 2 는비어홀 ( 제 2기판관통 ) 에분포하는전류와자기장분포를, 그림 2(c) 는등가회로추출을위한등가회로소자들의분포도를, 그리고그림 2(d) 는단위소자에대한간략화된등가회로를보여주고있다. 진행하는전류에의하여생성되는전기장과자기장은서로직각방향으로분포하며 λ/2의전기적길이단위로극성이서로바뀌면서분포한다. 그리고순수하게마이크로스트립선로에만분포해야할고주파신호전류가 SIAD 전송선로에서는비어홀내부의전류로일부가분산하게된다. 그러나입력되는신호에너지에의한총자속 (Φ) 은같으므로결과적으로자속 (Φ)/ 전류 (I) 의비로표현되는전송선로의인덕턴스 (L) 은결과적으로증가하게된다. 이와같은원리에의하여 SIAD 전송선로의등가인덕턴스가증가하게되는것이다. 이를더자세히설명해보면, 마이크로스트립신호선을따라흐르는수평적인전류와비어홀을따라흐르는전류가존재한다. 그림 2 는비어홀의전류와마이크로 스트립전송선로의전류에의하여자속밀도 B vias 와 B μstrip 1543

한국산학기술학회논문지제 10 권제 7 호, 2009 이각각생성됨을보여준다. 그러므로전체자속밀도 B 는 B vias+b μstrip 이고, 이에대응하는전체자속 φ는 φ vias+φ μ strip이다. 전체전류를 I라하면표준형마이크로스트립선로에서전류는 I μstrip,standard=i이지만, 적층형가유전체선로구조에서전류는 I μstrip,siad=i-i vias 의관계가된다. 한편전송선로에서등가인덕턴스를비교해보면, 적층형가유전체구조에서인덕턴스 (L SIAD) 는 φ/i μstrip,siad 으로나타나고, 표준형마이크로스트립선로의인덕턴스 (L standard) 는 φ/i μ strip,standard로나타나는데 I μstrip,siad 이 I μstrip,standard 보다더작은값을가지므로 L SIAD 가 L standard 보다더큰값을갖게된다 [5]. 한편개별비어홀의구조를살펴보면비어홀내부가금속면으로도포되어있으므로비어홀입구에서의미약한커패시턴스 (Cc) 가존재하며, 또한마이크로스트립선로상에서접지면방향으로의유전체를통한통상적인커패시턴스 (Co) 외에비어홀내부벽면금속면 ( 이것도위로치솟은접지면임 ) 과의사이에형성되는커패시턴스 (ΔC) 가추가로존재하게된다. 따라서모든커패시턴스들의총합이종래의표준형마이크로스트립선로의경우보다더증가하게된다. 결과적으로동일한유전체기판을이용한표준형마이크로스트립전송선로를사용했을경우에비하여전송선로의등가회로상에서인덕턴스의증가는유효투자율의증가로이해될수있고, 커패시턴스의증가는유효유전율의증가를의미하므로 SIAD 전송선로의유효투자율과유효유전율이증가하게되는것이다. 적층형가유전체전송선로구조는두개의중요파라미터인유효유전율 (ε eff), 유효투자율 (μ eff) 이모두증가하게되어결과적으로 으로표현되는유효굴절률이표준형마이크로스트립선로의유효굴절률 η standard 보다증가하게된다. 이때전송선로에서의관내파장이 의관계를가지므로, η eff 가표준형마이크로스트립선로와비교하여증가하므로길이가훨씬줄어들어회로의소형화에기여할수있게된다. (c) [ 그림 2] 적층형가유전체구조의마이크로스트립개념도 전류분포도 고주파영역에서의 의비어홀내부의전류분포도의확대도 (c) 적층형가유전체선로의등가회로분포도 (d) 단위길이에대한간략화된등가회로 (d) 4. 최적의비어홀시뮬레이션방법 비어홀은기판제작과정에서원래원형구조로제작된다. 그러나다수의비어홀구조를포함하는회로의시뮬레이션과정에서는이부분이엄청난계산 (computing) 을필요로한다. 그런데다수의비어홀은회로적시뮬레이션 (circuit simulation) 기법으로그특성을예측하기가어려우므로전자기적시뮬레이션 (electromagnetic (EM) simulation) 을수행해야한다. 하지만이과정에서엄청나게긴시간과고비용의컴퓨터사양을요구하게되어결국설계비용이매우높아지게된다. 따라서본연구에서는이를해결하고자실제제작은원형으로하되, 비교적정확하면서도효율적으로시뮬레이션을수행하기위하여최적의사각형비어홀구조를설계하여시뮬레이션에활용하는방법을연구하였다. 본연구에서는 EM 시뮬레이션을위하여 Ansoft 社의 HFSS V11을사용하였다. 그림 3은도체의두께 (T=0.035mm) 를고려한비어홀의구조를보여주고있다. 물론 T=0으로단순화시킨비어홀을사용할경우시뮬레이션은다소빠르게수행되지만, 측정과는다른결과를보여주는문제가있으며또한 T=0인경우는실제적인상황이아님이명백하다. [ 그림 3] 도체두께 (T=0.035mm) 를고려한원형비어홀구조 이제다수의원형비어를가진구조를효과적으로시뮬레이션하기위한과정을설명하고자한다. EM 시뮬레이션에서메쉬 (mesh) 의개수가작을수록계산량을줄일수있으므로기본적으로정사각형비어홀이가장효과적 1544

인구조이다. 그러나 T를고려한정사각형비어홀의치수를취할때원형비어홀과가장가까운특성을보여야하므로최적의정사각형치수를취하는것이효율적인설계및시뮬레이션을위하여매우중요하다. [ 그림 4] 원형구조와사각형구조의비어홀본연구에서는이를위하여그림 4에보인바와같이주어진어떤반지름을갖는원형비어홀의주변둘레의길이 (2πr) 와면적 (S1=πr 2 ) 을먼저계산하고, 이를기준으로하여 1)option 1 : 원의지름을정사각형의한변으로취한정사각형비어홀, 즉, L=L1=2r인비어홀, 2)option 2 : 원과주변둘레의길이가같은정사각형비어홀, 즉 L=L2=2πr/4인비어홀, 3)option 3 : 원과면적이같은정사각형비어홀, 즉 S1=S2가되도록 L=L3= 인비어홀, 4) option 4 : L2와 L3의중간값에해당하는 L=L4=(L2+L3)/2인정사각형비어홀을설계하였다. 그리고이런비어홀을갖는 SIAD 마이크로스트립선로를시뮬레이션하여원형비어홀과가장가까운특성을갖는정사각형비어홀을선택하여설계과정에사용하였다. 그림 5는상기에서설명한 4가지의경우에대한사각형비어홀의구조를보여주고있다. 정사각형의한변의길이가상대적으로조금씩다른치수를가지고있음을시각적으로도확인할수있다. 그림 3과그림 5에보인여러가지비어홀에대하여전송선로구조를 EM 시뮬레이션하여그특성을살펴보고이를그림 6에보였다. 시뮬레이션결과상기의 option 4의경우가원형비어홀인경우와가장근사한특성을보인것으로확인되었다. 그러면서표 1에정리된것처럼각경우에대한컴퓨팅시간 (computing time) 을비교해보면, 원형비어홀보다사각형비어홀의경우가훨씬짧은시간안에시뮬레이션이완료됨을알수있다. 또한 option 4의경우가시뮬레이션시간도짧으면서원형일때와가장유사한특성을보임을알수있다. 그래서이경우가원형비어홀을대신할수있는가장좋은시뮬레이션조건이라는것으로결론지을수있다. 한편표 1의결과는 13.6 x 13.6 mm 2 의기판에 100개의비어홀을 10 x 10의 2차원배열로시뮬레이션한결과를보여준다. 만약에이보다더넓은회로기판에대한시뮬레이션을행할경우컴퓨팅시간에서의차이, 즉사각형비어를사용한시뮬레이션에서의시간절약은이보다훨씬많을것으로판단된다. (c) [ 그림 5] 정사각형비어홀구조 option 1 의사각형비어홀 option 2 의사각형비어홀 (c) option 3 의사각형비어홀 (d) option 4 의사각형비어홀 (d) [ 그림 6] 다섯가지비어홀구조를갖는전송선로에대한 EM 시뮬레이션결과 S21 S11 1545

한국산학기술학회논문지제 10 권제 7 호, 2009 [ 표 1] 다섯가지시뮬레이션에대한비교 CPU time 원형비어홀 ( 그림 3) 2시간 48분 08초 option 1 25분 50초 option 2 10분 21초 option 3 41분 41초 option 4 14분 50초 5. SIAD 전송선로 [ 표 2] 마이크로스트립전송선로의선폭과길이 50Ω 70.7Ω 구분 (@2GHz) 표준형마이크로스트립선로 적층형가유전체선로 width 2.77 mm 1.28 mm λ/4 @ 2GHz 27.37 mm 20.96 mm η eff 1.37 1.81 width 1.56 mm 0.7 mm λ/4 @ 2GHz 27.85 mm 21.59 mm η eff 1.35 1.76 앞에서기술한연구결과를토대로하여적층형가유전체구조의전송선로를설계및구현해보았다. 여러가지임피던스중에기준값으로많이쓰이는 50Ω 선로와, 윌킨슨전력분배기에필요한 70.7Ω 선로에대하여설계하여보았다. 그림 7은적층형가유전체구조의전송선로의레이아웃이다. 50Ω과 70.7Ω 전송선로의폭과길이를찾기위해서기본구조에서값들을추출하였다. 마이크로스트립선로가구현되는윗기판의두께 (h1) 를 0.127mm로하고, 비어홀이구현되는아랫기판의두께 (h2) 를 0.7874mm로하였다. 그러므로총기판의두께 (h) 는 0.9144mm(36mils) 가된다. 설계결과표준형마이크로스트립선로의 80Ω에해당하는선폭을지는선폭일때적층형가유전체구조에서 50Ω 임피던스선로의역할을하는것으로확인되었다. 6. 윌킨슨전력분배기의소형화응용 먼저표준형전송선로로설계하고, 다시이를적층형가유전체전송선로로설계하여소형화정도를비교하였다. 그림 8은제작된적층형가유전체윌킨슨전력분배기를보여주고있다. 점선사각형으로별도로표시한부분이 70.7Ω의전송선로로구성되는순수한윌킨슨전력분배기회로부분이고, 다른부분의긴선로는각단자와의연결을위한 50Ω 전송선로부분이다. 윌킨슨전력분배기부분의면적은 11.4 x 12.62mm 2 이다. 한편종래의표준형윌킨슨전력분배기는널리알려진구조여서본논문에서는따로보이지않으나비교를위하여설계하였는데, 전력분배기부분의면적은 13.12 x 15.39mm 2 이었다. 따라서설계한적층형가유전체윌킨슨전력분배기회로의크기가표준형에비하여 29% 만큼줄었음을알수있다. [ 그림 7] 적층형가유전체구조의마이크로스트립전송선로구조 표 2를보면표준형마이크로스트립선로의경우보다적층형가유전체구조에서는폭과길이가크게감소함을알수있는데, 선폭과길이가각각 54%, 23% 만큼감소했음을알수있다. 또한유효굴절율 (η eff) 이 32% 정도증가하였는데, 이와유사한비율로회로의크기가소형화될수있음을예측할수있다. [ 그림 8] 적층형가유전체구조의윌킨슨전력분배기그림 9는표준형윌킨슨전력분배기의설계성능을보여주고있고, 그림 10은본논문에서설계한적층형가유전체윌킨슨전력분배기회로의설계성능이다. 제안한구조의전력분배기의성능을표준형과비교할때성능상의주요지표인전력분배특성, 단자정합특성, 격리특성에있어서아무런열화 (degradation) 가발생하지않았음 1546

을알수있다. 표 3은윌킨슨전력분배기의특성을 2GHz에서요약하여보여주고있다. 그러나 S32에서보이는 200MHz 정도의주파수상향천이를제외하면 2GHz를중심으로 400MHz의대역폭이상에서우수한분배, 정합및격리특성을보여주고있어서, 본논문에서제작한회로가소형화되었으면서도우수한성능을지니고있음을알수있다. [ 그림 9] 표준형윌킨슨전력분배기회로의설계성능 [ 그림 11] 본논문의적층형가유전체윌킨슨전력분배기의측정성능 [ 표 3] 윌킨슨전력분배기의특성요약 (@2GHz) [ 그림 10] 본논문의적층형가유전체윌킨슨전력분배기의설계성능 그림 11은본논문에서제작한적층형가유전체윌킨슨전력분배기의측정성능을보여주고있다. 설계과정에서예측한대로 S(2,1) 과 S(3,1) 이각각 -3.104dB, -3.264dB의전력분배특성과 -20dB 이하의단자정합및격리특성을지니고있다. 전력분배에있어서 0.1-0.2dB 정도의오차가있고, S22와 S32의주파수특성에얼마간의천이 (shift) 가있으나전반적인특성을보면윌킨슨전력분배기로서우수한특성을보이고있다. 주파수천이의원인으로는제작된 SIAD 기판상의수백개가넘는비어홀의크기가시뮬레이션에서처럼완전하게균일하거나정확하지않다는점과, 상면기판과하면기판의접합시비어홀들의위치와전송선로신호선과의상호위치조정 (alignment) 이시뮬레이션조건과완전하게일치하지않아각단자로분배되는선로의전기적길이가약간달라졌을수있다는점을들수있다. 따라서실제제작및측정시시뮬레이션과완벽하게같은조건을만들어주는것이어렵기는하지만, 이는향후제작및측정기술의향상으로해결해야할문제로여겨진다. 표준형분배기 ( 설계 ) 본논문의분배기 ( 설계 ) 본논문의분배기 ( 측정 ) S21 [db] -3.089-3.086-3.104 S31 [db] -3.107-3.034-3.264 S11 [db] -27.132-32.208-44.933 S22 [db] -25.634-25.576-27.602 S33 [db] -25.32-26.661-51.267 S32 [db] -20.383-22.832-21.986 7. 결론 본논문에서는적층형가유전체구조를이용한전송선로의효과적인설계를위한최적의비어홀시뮬레이션방법을소개하고, 이전송선로가유효굴절률이증가하여회로의소형화에이용될수있음을보이기위하여, 적층형가유전체구조의소형화된윌킨슨전력분배기의설계및측정결과를언급하였다. 원형비어홀을이용한시뮬레이션의설계시간을낮추기위한최적의사각형비어홀구조를제안한결과훨씬짧은시간으로도효과적으로시뮬레이션결과를얻을수있음을밝혔다. 또한본논문에서설계한적층형가유전 1547

한국산학기술학회논문지제 10 권제 7 호, 2009 체윌킨슨전력분배기는표준형에비하여 29% 만큼소형화되었으며, 이과정에서성능상의열화는없었다. 본논문에서얻어진연구성과들은타종류의고주파회로및시스템에도설계시간단축및소형화를목표로잘응용될수있을것으로판단되며, 본연구팀은이에대한연구를향후지속할예정이다. 구자경 (Jakyung Koo) [ 준회원 ] 2008 년 2 월 : 순천향대학교정보기술공학부 ( 공학사 ) 2008 년 3 월 ~ 현재 : 순천향대학교대학원전기통신시스템공학과석사과정재학중 참고문헌 [1] W. E. Kock, Metallic delay lenses, Bell Syst. Tech. J., vol. 27, pp. 58-82, 1948. [2] S. B. Cohn, Analysis of the metal strip delay structure for microwaves lenses, J. Appl. Phys., vol. 20, pp. 257 262, Mar. 1949. [3] S. B. Cohn, The electric and magnetic constants of metallic delay media containing obstacles of arbitrary shape and thickness, J. Appl. Phys., vol. 22, pp. 628 634, May 1951. [4] S. B. Cohn, Microwave measurements on metallic delay media, Proc. IRE, vol. 41, pp. 1177 1183, Sep. 1953. [5] M. Coulombe, H. V. Nguyen, and C. Caloz, Substrate Integrated Artificial Dielectric (SIAD) Structure for miniaturized Microstrip Circuits, IEEE. Ant. and Wir. Prop. Lett. vol. 6, pp. 575-579, 2007. [6] I. Awai, H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF, in Proc. IEEE Int. Microw. Symp. Conf., Philadelphia, PA, pp. 1085-1088, Jun. 9-13, 2003. [7] David M. Pozar, Microwave Engineering, 3rd edition, John Wiely and Sons, Inc., pp. 143-149, 2003. [8] N. J. Kolettis and R. E. Collin, Anisotropic properties of strip-type artificial dielectric, IRE Trans. Microw. Theory Tech., vol. MTT-9, no. 5, pp. 436 441, Sep. 1961. [9] M.-K. Hu and D. K. Cheng, A new class of artificial dielectrics, in WESCON/58 Conf. Record, vol. 2, pp. 21-25, Aug. 1958. < 관심분야 > 초고주파무선능동 / 수동회로 / 부품설계분야등 임종식 (Jongsik Lim) [ 종신회원 ] 1991년 2월 : 서강대전자공학과 ( 공학사 ) 1993년 2월 : 서강대대학원전자공학과 ( 공학석사 ) 2003년 2월 : 서울대대학원전기컴퓨터공학부 ( 공학박사 ) 1993년 2월 ~ 2005년 2월 : 한국전자통신연구원선임연구원 2005년 3월 ~ 현재 : 순천향대학교전기통신공학과재직중 < 관심분야 > 초고주파무선회로 / 부품설계, 능동 / 수동소자모델링및회로응용, 주기구조의모델링및회로응용등임. 안달 (Dal Ahn) [ 종신회원 ] 1984년 2월 : 서강대전자공학과 ( 공학사 ) 1986년 2월 : 서강대대학원전자공학과 ( 공학석사 ) 1990년 8월 : 서강대대학원전자공학과 ( 공학박사 ) 1990년 8월 ~ 1992년 8월 : 한국전자통신연구원선임연구원 1992년 9월 ~ 현재 : 순천향대학교전기통신공학과재직중 < 관심분야 > RF, 마이크로파수동소자해석및설계등임. 1548