cat_data3.PDF

Similar documents
Categorical Data Analysis Ch. 1 Introduction 1.1. 범주형자료분석이란자연과학, 사회과학은물론의학관련분야에까지범주형자료분석은널리활용되고있다. 기업의부실여부판단, 새로운의학치료법에대한가치평가, 사람들의의견에영향을주는요인들에대한평가등범주

nonpara6.PDF

untitled


untitled

nonpara1.PDF


eda_ch7.doc

untitled

슬라이드 1

수리통계학

e hwp

untitled


164

歯522박병호.PDF

Microsoft Word - sbe13_reg.docx

09권오설_ok.hwp

<3131BFF92D3828C6D0B3CEBFACB1B82DC0CCBBF3C8A D38302E687770>

PowerPoint 프레젠테이션

<C3CA3520B0FAC7D0B1B3BBE7BFEB202E687770>

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

슬라이드 1

<C7A5C1F620BEE7BDC4>


Chapter4.hwp


data driven_3.indd

Chapter 분포와 도수분석

methods.hwp

歯MW-1000AP_Manual_Kor_HJS.PDF

Precipitation prediction of numerical analysis for Mg-Al alloys

Orcad Capture 9.x

Microsoft Word - SAS_Data Manipulate.docx

텀블러514


PDF

hwp

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

HW5 Exercise 1 (60pts) M interpreter with a simple type system M. M. M.., M (simple type system). M, M. M., M.

Microsoft Word - ch2_smoothing.doc

¼º¿øÁø Ãâ·Â-1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Microsoft Word - multiple


wess_usage.PDF

<4D F736F F D20B1E2BBF3C5EBB0E85F36C0E55FC7D0BBFD2E646F6378>

보고서(겉표지).PDF

슬라이드 1

歯4차학술대회원고(장지연).PDF


Probabilistic graphical models: Assignment 3 Seung-Hoon Na June 7, Gibbs sampler for Beta-Binomial Binomial및 beta분포는 다음과 같이 정의된다. k Bin(n, θ):

5. 평활법 (FORECAST procedure) 일변량시계열자료의예측값과예측구간을구할때사용한다. 주로시간과자기자신의과거의관측값의함수를이용하여구하며, 다른시계열예측방법에비해빠르고쉬우며자동적이라는장점이있으나, 시계열의특성을고려하지못한다는단점도있다. 결과물은 output창

Microsoft PowerPoint - MDA 2008Fall Ch2 Matrix.pptx

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

fx-82EX_fx-85EX_fx-350EX

8. ARIMA 모형 (ARIMA Procedure) 8.1 ARMA(AutoRegressive Moving-Average) 모형 ARIMA 모형의기본형태 계절형 ARIMA 모형 8.2 ARIMA modeling 과정 데이터 모형의식별 (identification) 모

hwp

특집....,.,., (good jobs) (rent-sharing) (fairness)..... Ⅱ. 임금과생산성구조의분석모형 ) 1),,,, 2_ 노동리뷰

abstract.dvi

Slide 1

R&D : Ⅰ. R&D OECD 3. Ⅱ. R&D

Microsoft PowerPoint - ODF Alalysis.ppt [호환 모드]

歯안주엽홍서연원고.PDF

untitled

에너지경제연구 제2권 제2호 ( )

제 1 부 연구 개요

Microsoft Word - KSR2012A062.doc

Manufacturing6

π >> x=linspace(0,2*pi,30); >> y=sin(x); >> plot(x,y) π

Chapter 7 분산분석

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

산선생의 집입니다. 환영해요

T100MD+


(Transer Function) X(w) Y(w) H(w) Y(w) X(w) H ( w) φ H(w) H(w) X(w) Y(w). Vo ( w) H v ( w) V ( w) I o( w) H i ( w) I ( w) V ( w) H z ( w) I ( w) I ( w

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

歯엑셀모델링

Microsoft PowerPoint - ºÐÆ÷ÃßÁ¤(ÀüÄ¡Çõ).ppt

Microsoft Word - ch3_residual.doc

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

최종보고서 /

슬라이드 1

수학 모드

( )실험계획법-머리말 ok

½½¶óÀ̵å Á¦¸ñ ¾øÀ½

DIY 챗봇 - LangCon

13-darkenergy

MBA 통계6-12장.ppt

λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z)

KAERIAR hwp

07.051~058(345).fm

계량약물학 매뉴얼

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

Microsoft PowerPoint - MDA DA pptx

°ø¾÷-01V36pš

DBPIA-NURIMEDIA

KYO_SCCD.PDF

자기공명 임피던스 단층촬영 기술 연구센터 \(MREIT Research Center\)

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

Transcription:

( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary) Cochran-Armtage Trend Ch-square sub (Ch-square ) Hermt Contrast 3 4 Generatng Herarchcal Structure 3 4 (assocaton) 3 (modelng) Generalzed Lnear Model (GLM: ) GLM (Regresson), (ANOVA: Analyss of Varance) Logstc, Log- Lnear Model Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 58

3 Generalzed Lnear Model Neder & Wedderburn(97) GLM (component) 3 )random component: )systematc component: (predctor ) 3) lnk: systematc random 3 GLM (component) Random component natural exponental famly( ) Y = Y, Y, Y ) ( n f ( Y y; θ ) = a( θ ) b( y ) exp[ yq( θ )], θ (parameter) Posson ( ), Bnomal ( ), Standard Normal ( ) natural exponental famly θ ) Q θ ) ( ( Systematc component X ( data matrx desgn matr, β lnear predctor ( ) GLM systematc η = X β η = β 0 + βx + β x + + β p xp = β x for =,, n Lnk component Random systematc Y µ = E( Y ) µ η = g ( µ ) (monotonc dfferental functon) g( µ ) η lnk g = dentty lnk ( ) g( µ ) = µ E ( y ) = β x = β 0 + βx + β x = µ + + β β x Canoncal Lnk Canoncal Lnk g µ ) = Q( θ ) = β x = β 0 + β x + β x + + β p xp Canoncal Lnk ( p x p Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 59

3 Logt model (, bnary ; /, 0, Pr(Y y = ) y = π Bernoull ) f ( y ; π ) = π ( π ) = ( π )[ π /( π )] = ( π ) exp[ y y ln( π π )] : NE Famly π Q( θ ) = ln( ) odds rato ln π Logt Logt π GLM Logt ln( 33 Log Lnear model π π ) = β x = β + β x + β x + + β 0 n Posson n E ( n ) = m n n exp( m )( m ) f n; m ) = = exp( m )( ) exp[ n ln( m )] : NE Famly n! n! ( Q θ ) = ln( m ) ( 34 GLM ln( m ) = β x = β 0 + β x + β x + + β p xp Random, Systematc, Lnk GLM Random ( ) Normal Systematc ( ) Identty ( ) ( ) Regresson Normal Identty ANOVA p x p Model ( ) Normal Identty Mxed ( + ) Regresson wth Indcator ANCOVA Bnomal Logt Mxed Logstc Regresson Posson Log Mxed Log-Lnear Multnomal Generalzed Logt Mxed Multnomal response (Least Square Method) ( ) GLM Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 60

GLM Random log (lkelhood functon) strctly concave ML estmate( ) ML Fsher s scorng teraton algorthm Random 3 Logstc Regresson Y /, /, / 0, Pr(Y = ) = π Bernoull Y ( π π ( π ) Y ) Bnomal 3 Lnear Probablty Model ( ) ( Y ) = π ( = β + β x E 0 Identty Lnk ( ) x (lnear) GLM x, ( π ) V ( Y ) = π ( π ) 0 0 MVLUE 3 Logstc Regresson Model ( π ) x x π 0 S- π ( log t( π ( ) = ln( ) = β 0 + βx π ( exp( β 0 + β π ( = + exp( β + β 0 β > 0 π ( β < 0 0 x Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 6

log odds Logt x β 0( β < 0 ) ( β 0 > ) β 0 π ( x ( ) = βπ( [ π ( ] x π ( = / ( ) β Inference ( ) Logt ( β, =,,, p ) MLE (Maxmum Lkelhood Estmate) Wald (943) β ± zα / ASE( β ) : ASE = Asymptotc Standard Error ( ) ' ' β * = ( β, β,, β q ) subset β* = ( β, β,, β q ) = 0 ( 0 H 0 : β = H0 : β = β 3 = 0 ' L Reduced- ( β* = ( β, β,, β q ) = 0,, 3 ) L Full-, ) GLM Devance( ) Reduced Full ( ) GLM Devance l ln( ) = [ln l ln l ] = [ L L] ~ χ ( q) : l Theorem ~ χ ( : 7 ) Wald(943) ˆ ' ˆ ˆ ˆ β * ( Cov( β* )) β* ~ χ ( q) : Wald Logt Alan Agrest (990), Wley publcaton- page -7 Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 6

33 Inverse CDF( ) Lnks 6 ( π ( ) ( β > 0 ) (cumulatve probablty densty functon) β < 0 x x ( π ( = F ( β 0 + β : F ) GLM F ( π ( ) = β 0 + β x β > 0 logstc π ( x ) = exp( β 0 + β x ) /[ + exp( β 0 + β ] Logstc exp( ( x µ ) / β ) π β Logstc (pdf) f ( x µ, β ) = = µ, = β [ + exp( ( x µ ) / β )] 3 Logstc (cdf) F ( x µ, β ) = [ + exp( ( x µ ) / β )] β > 0 logstc π ( x ) = exp( β 0 + β x ) /[ + exp( β 0 + β ] Logstc Logstc regresson F µ = 0, τ = CDF π ( = F ( β 0 + β π β β α / 3 CDF Logt logstc CDF Logstc Probt model F CDF Φ π = Φ( β + β ) Probt ( 0 x Logstc π ( 0 Pr obt( π ( ) = Φ ( π ( ) = β 0 + βx 34 Lnear probablty model: Logt model: Probt model: π ˆ( = β 0 + βx πˆ( ln( ) = β0 + β x πˆ( Φ ( π ˆ( ) = β 0 + βx Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 63

Example Thymdne (LI) : LI 4 7 ( ) LI π ( 8 0 0 0 0 0 3 0 0 4 3 0 0 6 3 0 0 8 0 3 /3 / 4 0 0 6 8 3 0 0 34 38 3 /3 DATA CANCER; INPUT LI CASE GOOD @@; CARDS; 8 0 0 0 3 0 4 3 0 6 3 0 8 0 3 4 0 6 8 3 0 34 38 3 ; TITLE 'Lnear Lnk Functon'; PROC GENMOD DATA=CANCER; MODEL GOOD/CASE=LI /LINK=IDENTITY DIST=NORMAL; OUTPUT OUT=OUT PRED=YHAT_LI; TITLE 'Logt Lnk Functon'; PROC GENMOD DATA=CANCER; MODEL GOOD/CASE=LI /LINK=LOGIT DIST=BIN; OUTPUT OUT=OUT PRED=YHAT_LO; TITLE 'Probt Lnk Functon'; PROC GENMOD DATA=CANCER; Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 64

MODEL GOOD/CASE=LI /LINK=PROBIT; OUTPUT OUT=OUT3 PRED=YHAT_PR; DATA FIN; MERGE OUT OUT OUT3; PROC PRINT DATA=FIN; GENMOD GENeralzed lnear MODel Model = LINK Lnear Probablty Model (DIST=Normal) Logt model Probt DIST OUTPUT (statement) OUT SAS data PRED=YHAT (predcted value) YHAT P= RES= / U= / L= Lnear Prob Model πˆ ( x ) = 0507 + 0088 * LI ( L L) LI (0088) LI Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 65

Logt Model πˆ( ln( ) = 377 + 0449 * LI πˆ( πˆ( = + exp ( 377 + 0449 * LI ) LI (0449) LI Probt Model Φ ( π ˆ( x )) = 378 + 00878 *LI π ˆ( x ) = Φ( 378 + 00878 * LI ) LI (0038) LI Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 66

πˆ ( SYMBOL I=L3 V=NONE C=BLACK; SYMBOL I=L3 V=NONE C=RED; SYMBOL3 I=L3 V=NONE C=BLUE; AXIS ORDER=0 TO BY 05 LABEL=('PHI_HAT'); AXIS ORDER=8 TO 38 BY 0 LABEL=('LI LEVEL'); TITLE 'PHI HAT BY MODELs'; PROC GPLOT DATA=FIN; Symbol: V= value C=color I=nterpolate Axs ORDER=, LABEL= PLOT (YHAT_LI YHAT_LO YHAT_PR)*LI /OVERLAY VAXIS=AXIS HAXIS=AXIS; Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 67

HOMEWORK #7 Due 5 6 (X) (Y) 5,5 35 45 55 65 765 95 ) Logt Model (ft) ) Probt Model (ft) 3), Logt Model, Probt Model Sehyug Kwon, Dept of Statstcs, Hannam Unv http://wolfpackhannamackr sprng, 00 68