Jurnal f the Krean Ceramic Sciety Vl. 47, N. 3, pp. 237~243, 2010. DOI:10.4191/KCERS.2010.47.3.237 Synthesis f Sphene pink Pigment by Rice Husk Ash In-Dn J, Hyun-S Lee, and Byung-Ha Lee Department f Materials Science & Engineering, Myngji University, Yngin 449-728, Krea (Received March 5, 2010; Revised April 26, 2010; Accepted April 28, 2010) w Sphene pink w Á x Á w w œw (2010 3 5 ; 2010 4 26 ; 2010 4 28 ) ABSTRACT This research examines using Rice Husk Ash, Cr 2 in prducing the pink-red clr. It studies the frmatin f cassiterite and malayaite crystallites, the primary factrs in prducing the pink-red clr, in relatin t the applicatin f Cr 2 t examine its clring mechanism. In additin, the research intends t identify the ptimum synthesizing temperature and maintaining time fr crystallizatin f malayaite, a stable pink-red clrizatin factr in high temperature glaze during Cr 2 family pigment synthesis. The ptimum substituting cntents is Rice Husk Ash : Quartz = 1 : 2, and the ptimum temperature is suggested at 1300 C fr 2 h based n analysis results by XRD, FT-IR, Raman micrscpe, SEM and UV-vis. Key wrds : Malayaite, Sphene-pink, Rice husk ash, Pink-pigment 1. wì w» wì ñ w. wì» w wì wš» d j» w w. y w w red. w red y system» pink, purple, marn m. 1) w» Sphene pinkƒ y š. Cr 2 cassiterite(sno 2 ) malayaite(casnsio 5 ) š g purple l pink-red¾ ùkü š. 2,3) p, Cr 2 SnO 2, CaO wì w pink-red w š. ƒ w š š w ƒ w. Crrespnding authr : In-Dn J Malayaite(CaSnSiO 5 ) Cr 2 š g ùkü Cr 2 CaCr 0.02 Sn 0.985 SiO 5 y Brax 2wt% ƒw, 1200 C 2 w š. 4)» š Cr 2 w», silica e y silica w g š w.,» SiO 2 w w w. 2. x 2.1. ³ ƒ y x Cr 2 w ey w ùkü» w CaCr 0.02 Sn 0.985 SiO 5 SiO 2 ³ w Table 1 w xw., Ÿy brax 2wt% ƒw. E-mail : jid1012@naver.cm Tel : +82-31-330-6461 Fax : +82-31-330-6457 237
238 Á x Á w Table 1. Cmpsitin f Samples sample Cmpsitin m 1 cacr 0.02 sn 0.985 si 5 (rice husk ash : quartz = 2 : 1) + brax 2 wt% m 2 cacr 0.02 sn 0.985 si 5 (rice husk ash : quartz = 3 : 2) + brax 2 wt% m 3 cacr 0.02 sn 0.985 si 5 (rice husk ash : quartz = 1 : 1) + brax 2 wt% m 4 cacr 0.02 sn 0.985 si 5 (rice husk ash : quartz = 2 : 3) + brax 2 wt% m 5 cacr 0.02 sn 0.985 si 5 (rice husk ash : quartz = 1 : 2) + brax 2 wt% m 6 cacr 0.02 sn 0.985 si 5 (rice husk ash : quartz = 1 : 4) + brax 2 wt% m 7 cacr 0.02 sn 0.985 si 5 (rice husk ash : quartz = 0 : 1) + brax 2 wt% Table 2. Change Firing Schedule Sample Cmpsitin Firing Schedule M 5 CaCr 0.02 Sn 0.985 SiO 5 (Rice Husk Ash : Quartz = 1 : 2) + Brax 2 wt% 1150 C/6hr M 5 CaCr 0.02 Sn 0.985 SiO 5 (Rice Husk Ash : Quartz = 1 : 2) + Brax 2 wt% 1200 C/6hr M 5 CaCr 0.02 Sn 0.985 SiO 5 (Rice Husk Ash : Quartz = 1 : 2) + Brax 2 wt% 1250 C/6hr M 5 CaCr 0.02 Sn 0.985 SiO 5 (Rice Husk Ash : Quartz = 1 : 2) + Brax 2 wt% 1300 C/6hr Table 3. Change Firing Schedule Sample Cmpsitin Firing Schedule M 5 CaCr 0.02 Sn 0.985 SiO 5 (Rice Husk Ash : Quartz = 1 : 2) + Brax 2 wt% 1250 C/3 hr M 5 CaCr 0.02 Sn 0.985 SiO 5 (Rice Husk Ash : Quartz = 1 : 2) + Brax 2 wt% 1250 C/6 hr M 5 CaCr 0.02 Sn 0.985 SiO 5 (Rice Husk Ash : Quartz = 1 : 2) + Brax 2 wt% 1250 C/9 hr M 5 CaCr 0.02 Sn 0.985 SiO 5 (Rice Husk Ash : Quartz = 1 : 2) + Brax 2 wt% 1250 C/12 hr 2.2. y x w» w malayaite w š 900 C¾ 5 C/min 1200 C¾ 3 C/min w 1200 C 2 w. w w w» w q M-5 Table 2 y x w Table 3 y x w. 2.3. w w» w w» CaF 2 10 wt% ƒw XRD w. w Cr š» w FT-IR Raman spectrscpy w. w x j»» w SEM w. 2.4. x w» w z n 6wt% ƒw y» 1260 C 30 min w. z segel (1). w» w UV UV-vis w y ùkþ. 0.3264 KNaO 0.6588 CaO 0.4040 Al 2 3.5526 SiO 2 (1) 0.0148 MgO 3. š 3.1. ³ y w malayaite pink-red w w» w ³ Table 1 w 1200 C 2 w. w XRD Fig. 1 ù kü. XRD w malayaite cassiterite œ w. ³ 1 : 2 M-5 malayaite ƒ š, cassiterite ƒ. 2θ 33.6 ùkù malayaite (0 3 1), 33.9 ùkù malayaite (2 2 0), cassiterite (1 0 1) ùkù peak., w M-5 w ù w wz
w Sphene - pink w 239 Fig. 1. XRD patterns f samples fired at 1200 C/2 h. 33.9 peak j. M-5 cassiteriteƒ ƒ û, malayaite ƒ ùkþ. Fig 2 Raman d M-1 cassiterite -1 peak ùkù 451 cm -1, 631 cm -1, 982 cm cassiterite ƒ ƒw y w. p 631 cm ùkù cassiterite peak -1 M-4, M-5 w ù cassiterite. w cassiterite Cr cassiterite š w j. 6), cassiterite malayaite w j cassiterite. w d cassiterite ƒ M-4, M-5 ƒ malayaite y w. CaO cassiterite -1 450 cm w M-4 ùkü CaO casiterite sw. w Raman spectrscpy d M-5 malayaite ƒ. 3.2. Cr 2 y w Cr 2 malayaite j» w. Table 1 malayaite ƒ yw ùkù M-5(CaCr 0.02 Sn 0.985 SiO 5 ( :³ =1:2)+Brax 2wt%) ƒ š 1150 C, 1200 C, 1250 C, 1300 C ƒƒ 2h w. XRD w Fig. 3 ùkü. 1250 C malayaite ƒ. yw y w» w FT-IR w Fig. 4 ùkü. FT-IR spectra ù Fig. 2. Raman spectrscpy spectra f samples fired at 1200 C/2 h. 47«3y(2010)
240 Á x Á w Fig. 3. XRD patterns f samples fired at 1150 C/2 h, 1200 C/ 2h, 1250 C/2 h, 1300 C/2 h. Fig. 5. XRD patterns f Table 3, fired at 1250 C/3h/6h/9h/ 12 h. kù malayaite -1 p 479 cm -1, 560 cm -1, 675 cm -1, 807 cm -1 cassiterite p 470 cm -1, 630 cm -1, 1100 cm. 8,9) 479 cm -1 malayaite p 1250 C¾ band ƒ ƒw ƒ 1300 C ƒ û y w. -1 470 cm cassiterite p band 1250 C¾ ƒ w ƒ 1300 C ƒ f y w. malayaite 1250 C¾ w ƒ 1300 C w cassiteriteƒ ƒw. w 1250 C malayaite ƒ. 3.3. Cr 2 y x 1250 C ³ w» w M-5 3h, 6h, 9h, 12h w. XRD Raman Fig. 5 Fig. 6 ùkü. Fig. 5 XRD, 2θ 33.6 33.9 ùkù malayaite cassiterite w 6 w mlayaite ƒ. Fig. 6 Raman d, j ù cassiterite p peak -1 630 cm peak š 6h w cassiterite ƒ y w. Fig. 4. FT-IR spectra f samples fired at 1150 C/2 h, 1200 C/2 h, 1250 C/2 h, 1300 C/2 h. w wz
w Sphene - pink w 241 Fig. 6. Raman spectrscpy spectra f samples fired at 1250 C/3 h/6 h/9 h/12 h. Fig. 7. UV-vis spectra f pigment and glazed samples at 1200 C/2 h. 3.4. x 1250 C y w w» w Table 1 M-5 ƒ ƒ 3h, 6h, 9h, 12h w w. w z 6wt% ƒw 1260 C 30 w z, ùkù UV UV-vis w Fig 8 ùkü. CIE L, a, b d L = 29.77, a = 22.16, b =4.61 3h w (L = 32.78, a = 22.25, b = 4.57) ùkü a 0.09 û ùkü w ƒ û ƒ j ùk ü w ù UV-vis spectra d w. UV-vis spectra ùkù 380 nm Cr(III) w ùkü, 520 nm Cr(IV)ƒ malayaite š w e. 520 nm Tanabe- Sugan diagram, 3A 2g (F) 3T 1g (F) w 3,7) malayaite. w, malayaite Cr(III) š 520 nm brad w ƒ 520 nm ùkù ƒ malayaite Cr(IV) š ƒ w. Cr(IV)ƒ Fig. 7 ùkü UV-vis spectra M-5 520 nm M-4, M-6 w w û ùkþ, M-6 Cr(III) š w 520 nm brad ƒ š, M-4 380 nm Cr(III) w M-5 ùkû. Fig. 7 Fig. 8 ùkü UV-vis d, š d w» w 520 nm w 6h w w w ƒ ƒ j ùküš y w. w 1250 C 6h w ƒ ƒ pink-red wš ùkü. 3.5. SEM M-5 1250 C 6 h, 12 h 47«3y(2010)
주인돈 이현수 이병하 242 Fig. 8. UV-vis spectra f glazed samples by firing at 1250C/3 h, 6 h, 9 h, 12 h. Fig. 9. SEM images f the Samples M-5 fired at 1250C/6 h,12 h and 1300C/6 h. 한 안료와 1300 C/6 h으로 소성한 안료의 입형과 입경을 비교하기 위해서 SEM 관찰을 하였다. 그 결과 합성 안 료에는 주상형의 malayaite 결정으로 이루어 졌음을 알 수 있다. 이중 1250 C에서 6 h 소성한 안료의 경우 주상형의 결정이 가장 길고 다소 각이 있는 형태를 나타내는 반면 12 h 유지 소성한 안료에서는 주형 결정이 분해되어 오히 려 작아지는 결과가 나타났으며, 응집되어 있었다. 1300 C 에서도 역시 결정의 크기가 작아졌으며 응집되어 있었다. 이러한 결과는 앞의 XRD나 Raman 분석 결과와도 잘 일 치하였다. 4. 결 론 1) 왕겨재를 사용하여 sphene-pink의 안료 합성 시 최적 의 조성은 CaCr0.02Sn0.985SiO5이며 이때 silica의 공급은 왕 겨재와 규석의 몰 비가 1:2가 되도록 첨가 하는 것이다. 이 경우 광화제로는 brax를 2 wt% 첨가하는 것이 최적이다. 한국세라믹학회지 소성 조건은 1250 C에서 6 h 유지 한 후 자 연 냉각 하는 경우로서 이때, 합성된 안료 내에서 cassiterite 결정이 가장 적고 malayaite 결정이 가장 많이 생성 되었다. 3) 이와 같이 합성된 안료를 투명 석회 유약에 6 wt% 넣어 1260 C에서 소성한 경우 유약의 색상은 CIE L = 29.77, a =22.16, b =4.61로 짙은 핑크색을 나타내었다. 4) 기존에 규석만을 사용하여 Cr O -SnO -CaO-SiO 계 열의 안료 합성 시 최적의 소성 온도로 보고된 1300 C보 다 왕겨재를 사용한 조성의 경우 합성 온도를 50 C 낮출 수 있다. 2) 최적의 2 3 2 2 Acknwledgments This wrk was supprted by Krea Science and Engineering Fundatin (KOSEF) grant funded by Krea Gvernment (MOST). (N. R0A-2006-000-10442-0).
w Sphene - pink w 243 REFERENCES 1. X. Faurel, A. Vanderperrel, and P. Clmban, Pink Pigment Optimizatin by Resnance Raman Spectrscpy, J. Ramans. Spec., 34 [4] 209-94 (2003). 2. E. Crdncill, F. del Ri, J. Carda, M. Llusar, and P. Escriban, Influence f Sme Mineralizers in the Synthesis f Sphene-Pink Pigments, J. Eur. Ceram. Sc., 18 [8] 1115-20 (1998). 3. G. Mnrós, H. Pint, J. Badenes, M. Lluser, and M. A. Tena, Chrmium(IV) Stabilizatin in New Ceramic Matrices by Cprecipitatin Methd: Applicatin as Ceramic Pigments, Z. Anrg. Allg. Chem., 631 [11] 2131-35 (2005). 4. H. S. Lee and B. H. Lee, Influence f CrCl 3 in Sphene- Pink Pigments J. Kr. Ceram. Sc., 45 [5] 268-75 (2008). 5. H. S. Lee and B. H. Lee, Cluring Effect f Malayaite Frmatin and Synthesis Sphene-Pink Pigment, J. Kr. Ceram. Sc., 45 [3] 172-78 (2008). 6. B. Julin, H. Beltrn, E. Crdncill, P. Escriban, J. Flgad, M. Vallet-Reg, and R. P.del Real, A Study f the Methd f Synthesis and Chrmatic Prperties f the Cr Pigment, Eur. J. Inrg. Chem., 2002 [10] 2694-700 (2002). 7. A. Dmnech, F. J. Trres, E. R de Sla, and J Alarcn, Electrchemical Detectin f High Oxidarin States f Chrmium(IV and V) in Chrmium-Dped Cassiterite and Tin- Sphene Ceramic Pigmenting Systems, Eur. J. Inrg. Chem., 2006 [3] 638-48 (2006). 8. F. J. Berry, N. Cstanatini, and L. E. Smart, Synthesis f Chrmium-cntaining frm Pigment Chrmium Recvered frm Leather Waste, J. Waste Management., 22 [7] 761-72 (2002). 9. N. T. McDevitt and W. L. Baun, Infrared Absrptin Study f Metal Oxides in the Lw Frequency Regin (700-240 cm -1 ), J. Spectrchimica Acta., 20 [5] 799-808 (1964). 47«3y(2010)