Microsoft Word - multiple

Similar documents
eda_ch7.doc

abstract.dvi

Chapter 8 단순선형회귀분석과 상관분석

6. 추 정 (Estimation)

nonpara6.PDF

hwp

슬라이드 1

경제수학강의노트 09 미분법 I: 미분법칙, 편미분, 전미분 Do-il Yoo PART III: Comparative-Static Analysis 비교정태분석 Chapter 7: Rules of Differentiation and Their Use in Comparat

슬라이드 1

DBPIA-NURIMEDIA

cat_data3.PDF

<30312D303720B9DAC1A4BCF62E666D>

제 1 부 연구 개요

untitled

untitled

<C0E5B7C1BBF328BEEEB8B0C0CCB5E9C0C729202D20C3D6C1BE2E687770>

Microsoft PowerPoint - IPYYUIHNPGFU

untitled

融合先验信息到三维重建 组会报 告[2]

nonpara1.PDF

< C0FCC0CEC3CA2E687770>

methods.hwp

DBPIA-NURIMEDIA



Chapter 7 분산분석

歯4차학술대회원고(장지연).PDF

SRC PLUS 제어기 MANUAL

슬라이드 1

(001~042)개념RPM3-2(정답)

°ø±â¾Ð±â±â

Chapter 7 분산분석

untitled

MATLAB and Numerical Analysis

Microsoft PowerPoint - chap_2_rep.ppt [호환 모드]

untitled

public key private key Encryption Algorithm Decryption Algorithm 1

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

MBA 통계6-12장.ppt

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

2007백서-001-특집

¾Ë·¹¸£±âÁöħ¼�1-ÃÖÁ¾

01....b

00목차

(291)본문7

(azimuth agle), (elevatio agle), [1],[2].,,,, CRPL(Cetral Radio Propagatio Laboratory) [5] [6] 7 6, [7],,,, (Maximum Likelihood Estimatio), 2-1, 2-2 2


슬라이드 1

DBPIA-NURIMEDIA

텀블러514

ANOVA 란? ANalysis Of VAriance Ø 3개이상의모집단의평균의차이를검정하는방법 Ø 3개의모집단일경우 H0 : μ1 = μ2 = μ3 H0기각 : μ1 μ2 = μ3 or μ1 = μ2 μ3 or μ1 μ2 μ3 àpost hoc test 수행

Microsoft PowerPoint - chap08.ppt

Chapter 7 분산분석

( )실험계획법-머리말 ok

14.531~539(08-037).fm

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3

0 cm (++x)=0 x= R QR Q =R =Q = cm =Q =-=(cm) =R =x cm (x+) = +(x+) x= x= (cm) =+=0 (cm) =+=8 (cm) + =0+_8= (cm) cm + = + = _= (cm) 7+x= x= +y= y=8,, Q


untitled

COVER.HWP

이슈분석 2000 Vol.1

가볍게읽는-내지-1-2

한눈에-아세안 내지-1

kbs_thesis.hwp


<C8A3C5DABBEABEF720B0E6B1E2B5BFC7E220BFB9C3F820B8F0B5A8BFA120B4EBC7D120BFACB1B85FC3D6C1BE28C7D1C3A2BFB1292E687770>

예제 1.1 ( 관계연산자 ) >> A=1:9, B=9-A A = B = >> tf = A>4 % 4 보다큰 A 의원소들을찾을경우 tf = >> tf = (A==B) % A

<4D F736F F D20BDC3B0E8BFADBAD0BCAE20C1A B0AD5FBCF6C1A45FB0E8B7AEB0E6C1A6C7D E646F63>

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

슬라이드 1

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...

wess_usage.PDF

#수Ⅱ지도서-4단( )

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

<BACFC7D1B3F3BEF7B5BFC7E22D3133B1C733C8A BFEB2E687770>


조선독립동맹 ⑴ 결성 중국 화북지방에서 94년 7 월, 사회주의 계열인 김두봉, 무정 등이 결성하였고, 조선의용대 화북지대를 조선의용군으로 개편하여 요문구, 백초평, 화순 등지에서 일본군과 격전을 벌였다. ⑵ 건국강령 전 국민의 보통선거에 의한 민주공

오수썰

<3130C0E5>

슬라이드 1


조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

Check 0-9, 9,, - 6, 6, 6, =0.04, (-0.) = , =64 8 8, -8 (-6) =6 (-6) 6, -6 7, , -0. 8, -8 6, '7 ' '

2-32

슬라이드 1

09È«¼®¿µ 5~152s

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Microsoft Word - ch2_simple.doc

Microsoft Word - sbe13_reg.docx

Microsoft Word - KSR2012A021.doc

*LAC-1211

CHO3. 수요예측 1


Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

44-4대지.07이영희532~

歯표지_최종H_.PDF

(72) 발명자 정진곤 서울특별시 성북구 종암1동 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 -

<C5F0B0E82D313132C8A328C0DBBEF7BFEB292E687770>

Transcription:

Chapter 3. Multiple Liear Regressio Data structure ad the model yi 0 1xi1 pxip i, i1,, (Y X ),,, : idepedet with E( ) 0 ad 1 : ukow 0, 1,, p, 0 1 i var( i ) X (1, x,, xp), rak( X) p1, X : give where xj ( x1 j,, xj) 1

Least squares estimates miimize ( yi 0 1xi1 pxip) w.r.t. 0,, p i1 ormal equatio : e ˆ ˆ ˆ i yi ( 0 1xi1 pxip) yi yˆ i (p.57) e 0 e 0 ˆ y ˆ x ˆ x xi1ei 0 ( xi1 x1) ei 0 S ˆ ˆ 111 S1 p p S y1 x 0 ( ) 0 ˆ ˆ ipe i xip xp e i S p11 S pp p S yp i i 0 1 1 p p Sij ( xai xi )( xaj xj ) a1 where. Syj ( ya y)( xaj xj ) a1 least squares regressio fit: y ˆ ˆ ˆ 0 1x1 x ˆ p p estimate (ubiased) of : ˆ 1 1 y y SSE p1 p1 ( i ˆi) i1

Matrix approach For y ( y1,, y) x ( x,, x ) ( j 1,, p), j 1 j j X (1, x,, x p ),, 1 ( 0, 1,, p ), ad ( 1,, ), Model: y X Assumptios : 1,, are idepedet with E( ) 0 ad i var( i ) Least square estimate: ˆ argmi( y X)( y X) ( y X )( y X) yy yx Xy XX ( Xy ) Xy ( y X)( y X) XX Xy Xy 0 Recall that ( cx ) ( xc ) c x x ( yay ) ( A A) y y 3

( y X)( y X) XX Xy Xy 0 ˆ ( XX ) 1 Xy ( ) rak( X X ) rak( XX ) rak( X ) rak( X ) p 1 ˆ 1 1 yˆ X X( X X) X y Py ( P X( X X) X ) I case of p 1, ( x j)( yj) ( xj)( xjyj) 1 ˆ0 j y j ˆ x xj ( xj) ˆ x 1 j xj x j y j xjyj ( xj)( yj) xj ( xj) This is coicidet with the result of simple liear regressio. 4

Method of iferece (1) Properties of estimates Recall that E y X y I yˆ X ˆ X XX Xy P P X XX X 1 1 ( ), var( ) var( ), ( ) y ( ( ) ) E( ˆ ), var( ˆ ) ( X X) ˆ 1 1 E( ) E ( XX ) Xy ( XX ) XE( y) ˆ 1 1 1 var( ) ( XX ) Xvar( y) X( XX ) ( XX ) 1 i. ii. E( ˆ ), E( e) 0, var( e) I P e y yˆ I P y E() e I PE( y) I PX X PX X X 0 X var( e) I Pvar( y) I P I PI I P( I P) ( I P) IP 5

() Iferece uder additioal ormality assumptio Let i. 1 C ( XX) ( c ij ) 0 i, j p ˆ i i se..( ˆ ) i ˆ 1/ ~ t ( p1); se..( i) cii ( i1,, p) Pr ˆ t ( p1; ) se..( ˆ ) 1 i i i ˆ Reject H v.s. 0 0 : i i H 0 1 : i i ˆ 0 i i iff t ( p 1, ) se..( ˆ ) i p-value: ii. ˆ 0 0 1/ ~ t ( p1); se..( 0) c00 ˆ 0 se..( ) ˆ ˆ Similar to ˆi 6

E( Y x ) x where x ( x, x,, x ) with x 1 ˆ 0 0 1 1/ ~ t ( p1), se..( ˆ 0) ˆ x0( XX ) x0 se..( ˆ ) iii. 0 0 0 0 00 01 0 p 00 0 ˆ x ˆ var( ˆ ) x var( ˆ ) x 0 0 0 0 0 C.I. ad Test iv. Predictio for y0 x0 0 ( 0 1,, ) yˆ ˆ 0 x0 ( ˆ 0) y yˆ se..( y ) 0 0 1 1/ ~ t ( p1); se..( y0 y0) (1 x0( XX) x0) 0 yˆ 0 ˆ ˆ 7

Example (Supervisor Performace Data) data (=30, p=6) 8

scatter plot eed to be doe to see the validity of liearity assumptio model settig (eq. (3.3)): Y 0 1X1X 6X6 estimated LS fit (eq. (3.5)) LSE s with s.e. s (Table 3.5): idividually x 1 & x 3 the oly sigificat variables. PROC REG DATA=p054; MODEL y = x1 x x3 x4 x5 x6; RUN; 9

Aalysis of Variace Source DF Sum of Mea Squares Square F Value Pr > F Model 6 3147.96634 54.66106 10.5 <.0001 Error 3 1149.0003 49.95654 Corrected Total 9 496.96667 Root MSE 7.06799 R-Square 0.736 Depedet Mea 64.63333 Adj R-Sq 0.668 Coeff Var 10.9355 Parameter Estimates Variable DF Parameter Stadard Estimate Error t Value Pr > t Itercept 1 10.78708 11.5896 0.93 0.3616 X1 1 0.61319 0.16098 3.81 0.0009 X 1-0.07305 0.1357-0.54 0.5956 X3 1 0.3033 0.1685 1.90 0.0699 X4 1 0.08173 0.148 0.37 0.7155 X5 1 0.03838 0.14700 0.6 0.7963 X6 1-0.1706 0.1781-1. 0.356 10

Measurig the quality of fit ( 3.7) i. Decompositio of sum of squares : ( yi y) ( yi yˆi) ( yˆi y) 1 1 1 SST SSE SSR ( 1) ( p1) ( p) 1 1 Recall, for e y yˆ, e 0, x1e 0,, x e 0; i i i i i i ip i ( x x ) e 0,, ( x x ) e 0 i i ip p i ( y yˆ )( yˆ y) e ˆ ( x x ) ˆ ( x x ) 0 i i i i 1 i1 1 p ip p i1 i1 ii. Multiple correlatio coefficiet (MCC) & Adjusted MCC R SSR SSE 1 SST SST ; 0 R 1 R 1 meas that determiatio of y by liear combiatio of x becomes larger or 11

proportio of variatio of y explaied by x 1, x, p 설명변수의개수가증가하면항상 R ; SSE 가무조건감소! 제약 (costrait) 이있으면 최소값은커지고 ˆ ˆ ˆ i ˆi i 0 1 i1 p ip SSE ( y y ) ( y x x ) i1 i1 mi ( y x x ) ( 0, 1,, p ) i1 i 0 1 i1 p ip 최대값은작아진다. 1

mi ( y x x ) p1 p1 1, 0 1 i 0 1 i1 p ip ( SSE of Model : y x x ) mi ( y x x ) 1 i i 0 1 i1 p 0 1 i1 p ip i ( SSE of Model: y x x ) i 0 i1 p ip ip i SSE( reduced model) SSE( full model) R R ( reduced model) ( full model) R 는설명변수의개수가서로다른모형간의적합도비교에는부적절함. 따라서, 다음의 adjusted R 를고려함. SSE ( p 1) Ra 1 SST ( 1) 설명변수개수가서로다른모형의적합도비교에사용 13

Example (Supervisor Performace Data) Full model: y0 1x1 6x6 (SS) (df) SSR SSE SST 3147.97 6 1149 3 496.97 9 3147.97 1149 3 R 0.73, R a 1 0.66 496.97 496.97 9 Simpler (Reduced) model : y 0 1x13x3 (SS) (df) SSR SSE SST 304.3 154.65 7 496.97 9 304.3 154.65 7 R 0.708, R a 1 0.686 496.97 496.97 9 14

Hypotheses testig i liear regressio model ( 3.9) i. Reduced Model ( 축소모형 ) v.s. Full Model ( 완전모형 ) H 0 : reduced model (RM) v.s. H 1: full model (FM) where RMFM (RM: (q +1) regressio parameters, FM:( p +1) regressio parameters q p r) (example) (FM) y 0 1x16x 6 ( i1,,30) i i i i (RM) (a) H0: y i 0 i v.s. H 1 : full model H0: 1 6 0 v.s. H 1 : ot H 0 (b) H0: y0 0 1xi1 3xi3 i v.s. H 1 : full model H0: 4 5 6 0 v.s. H 1 : ot H 1 15

ii. sums-of-squares i RM & FM df p1 FM FM SSE( FM ) ( yi yˆ i ), yˆ i : l.s.fit uder FM (# of parameters p 1) i1 RM RM SSE( RM ) ( yi yˆi ), yˆi : l.s.fit uder RM (# of parameters q 1) i1 df q1 df p SSR( FM ) SST SSE( FM ) SSR( RM ) SST SSE( RM ) df q, SST ( y y) SSE( FM ) SSE( RM ); SSR( FM ) SSR( RM ) i 0 1 i1 p ip p1 1 mi ( yi 0 1xi1 pxip) SSE( RM) restrictios 1 wrt.. SSE( FM ) mi ( y x x ) SSE( RM ) SSE( FM ): i1 i Degree of freedom ( df ) SSE : (# of parameters) SSR :(# of parameters) 1 SST : 1 reductio i residual s.s. by itroducig p SSR( FM ) SSR( RM ): added amout of explaatio due to the p 16 q more parameters (variables) to RM q more parameters (variables) to RM

iii. F-test statistic for RM vs FM : F SSR( FM ) SSR( RM ) #( FM ) #( RM ) SSE( FM ) #( FM ) ( Rp Rq) {( p1) ( q1)} (1 Rp ) ( p1) SSE( RM ) SSE( FM ) #( FM ) #( RM ) SSE( FM ) #( FM ) F ~ F( pq, p 1) uder H 0 Reject RM vs FM if F F( pq, p 1; ) p-value: p 1 1 1 ESSRFM ( ) SSEFM ( ) ( i ), i p1 p1 i1 i1 17

Example: (Supervisor Performace Data) (FM) iid i 0 1 i1 6 i6 i, i ~ (0, ) y x x N H : 0 v.s. H 1 : ot H 0 0 4 5 6 PROC REG DATA=p054; MODEL y = x1 x x3 x4 x5 x6; TEST x=x4=x5=x6=0; RUN; i.e., RM is yi 0 1xi13xi3 i. SSE(FM)=1149 (df=3) SSE(RM)=154.65 (df=7) F (154.65 1149) (6 ) 0.58; F F(4,3;0.05).8. 1149 3 ( or, F ( RFM RRM ) (6 ) (0.736 0.708) (6 ) (1 RFM ) (30 7) (1 0.736) (30 7) ) Do ot reject H 0 at 5% level! 18

iv. Iferece after adaptig a reduced model : - Test more reduced model v.s. the reduced model ew reduced model v.s. ew full model Example (Supervisor Performace Data) New full model: iid i 0 1 i13 i3 i, i ~ (0, ) y x x N PROC REG DATA=p054; MODEL y = x1 x3; RUN; 19

1 Sigificace of x 1 ad x 3 <Table 3.8> (FM) H1: yi 0 1xi1 3xi3 i v.s. (RM) H0: yi 0 i H0: 1 3 0 v.s. H 1 : ot H 0 0

F ( SSE( RM ) SSE( FM )) / (3 1) ( SST SSE( FM )) / (3 1) SSE( FM )/( 3) SSE( FM )/( 3) ; highly sigificat SSR( FM ) 3.7 F(, 7;0.05) SSE( FM ) 7 <ANOVA Table> Source S.S d.f. Mea square F-test Regressio SSR p MSR = SSR / p F = MSR / MSE Residual SSE -p-1 MSE = SSE / (-p-1) Total SST -1 Sigificace of x 1 : H0: 1 0 v.s. H 1 : ot H 0 - (RM) H0: yi 0 3xi3 i v.s. (FM) H1: yi 0 1xi13xi3 i - Either F-test or t-test 1

- t-test : t ˆ 0 0.6435 se..( ˆ ) 0.1185 1 ; t(7;0.05) 1 5.43 와비교또는 p -value<0.0001 H : v.s. H 1 : ot H 0 3 0 1 3 H 0 : yi 0 1 ( xi1xi3) i v.s. H 1 : yi 0 1xi13xi3 i F ( RFM RRM ) ( 1) (0.708 0.6685) 1 3.65 (1 RFM ) ( 3) (1 0.708) 7 F F(1,7;0.05) 4.1 Do ot reject H 0 at 5% level PROC REG DATA=p054; MODEL y = x1 x3; TEST x1=x3; RUN;

Iterpretatios of regressio coefficiets ( 3.5) yi 0 1xi1 pxip i, i1,, i. 0(costat coef.) : the value of y whe x 1 x x p 0 ii. j (regressio coef.) : the chage of y correspodig to a uit chage i x ( j 1,, p ) j whe x i s (i j) are hold costat (fixed) iii. also called partial regressio coef. e.g.: Yˆ 15.33 0.78X1 0.050X Yˆ 14.38 0.75X eyx 1 1 1 Xˆ 18.97 0.51X ex X 1 1 eˆ 0 0.050e 3 YX 1 XX1 j ( j ): the cotributio of X j ( X ) to the respose variable Y after both variables have bee liearly adjusted for the other predictor variables ( X 1). 3

Graphical relatioship betwee full ad reduced model t Let 1 t P 1 11 1, ad what is a graphical meaig of 1 t χ I P x, χ t t of χχχχy PY? χ Let ( 1 ) t P χχχχ, X (1, x) t ( I1 11 1) x( IP 1 ) x? t Px ad t, ad PX t X XX X. What is a graphical meaig Fid a relatioship amog PYPY, χ, 1 ad PY X. ˆ 0 y y y1 x x x1 ˆ 1 y1 4 1