< C1A4C8EFB6F42E687770>

Similar documents
11.hwp

이상훈 심재국 Vegetation of Mt. Yeonin Provincial Park Department of Life Science, Chung-Ang University The forest vegetation of Mt. Yeonin Provincial Park

7(4)-10.fm

도감본문(수정)~10p


03-서연옥.hwp

UM PDF

untitled

12 Korean Journal of Agricultural and Forest Meteorology, Vol. 16, No. 1 다 (Kim et al., 2012). 여러가지생물종이어우러져구성된생물군집은종간상호작용이다양할것이므로종다양성이높은군집은구조적으로복잡할것이다

13-ºÎ·Ï¸ðÀ½-0312

03이경미(237~248)ok

17(2)-08.fm

433대지05박창용

02À±¼ø¿Á

09È«¼®¿µ 5~152s

7(3)-03.fm

58 Journal of Agriculture & Life Science 46(4) Ⅰ. 서론곰솔 (Pinus thunbergii Parl.) 은바닷가와해풍의 영향이미치는곳에서자생하고있으며, 분포범위는북위 에서 까지분포하고있다 (Kim & Kil,

04±èºÎ¼º

hwp

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

歯1.PDF

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<302DC5EBC0CFB0FA20C6F2C8AD28BFCF292E687770>


01À̽ÂÈ£A9-832š

untitled

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Lumbar spine

13장문현(541~556)ok

012임수진

14.531~539(08-037).fm

44-3대지.02이광률c

(5차 편집).hwp

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

<303720C7CFC1A4BCF86F6B2E687770>

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

04김호걸(39~50)ok

44-3대지.08류주현c

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

지난 2009년 11월 애플의 아이폰 출시로 대중화에 접어든 국내 스마트폰의 역사는 4년 만에 ‘1인 1스마트폰 시대’를 눈앞에 두면서 모바일 최강국의 꿈을 실현해 가고 있다

한국성인에서초기황반변성질환과 연관된위험요인연구

01이정훈(113~127)ok

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: * Strenghening the Cap

,......

<C7D1B1B9B1A4B0EDC8ABBAB8C7D0BAB85F31302D31C8A35F32C2F75F E687770>


Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: The Effect of Caree

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

발간등록번호

10¿ÀÁ¤ÁØ

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: : A basic research

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

이웅빈 A Flora of Mt. Umyeon Department of Biological Science, Yongin University Mt. Umyeon is located between Seocho-gu in Seoul and Gwacheon-si in Gyeo

04서종철fig.6(121~131)ok

상담학연구,, SPSS 21.0., t,.,,,..,.,.. (Corresponding Author): / / / Tel: /

<28BCF6BDC D B0E6B1E2B5B520C1F6BFAABAB020BFA9BCBAC0CFC0DAB8AE20C1A4C3A520C3DFC1F8C0FCB7AB5FC3D6C1BE E E687770>

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

Journal of Educational Innovation Research 2016, Vol. 26, No. 1, pp.1-19 DOI: *,..,,,.,.,,,,.,,,,, ( )

. 45 1,258 ( 601, 657; 1,111, 147). Cronbach α=.67.95, 95.1%, Kappa.95.,,,,,,.,...,.,,,,.,,,,,.. :,, ( )

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

<303038C0AFC8A3C1BE5B315D2DB1B3C1A42E687770>

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

step 1-1


목차 ⅰ ⅱ ⅱ ⅳ i

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

<31325FB1E8B0E6BCBA2E687770>

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i


<C5EBC0CFB0FA20C6F2C8AD2E687770>

p 19; pp 32 37; 2013 p ㆍ 新 興 寺 大 光 殿 大 光 殿 壁 畵 考 察 ; : 2006

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

DBPIA-NURIMEDIA

11¹ÚÇý·É

44-6대지.07전종한-5

216 동북아역사논총 41호 인과 경계공간은 설 자리를 잃고 배제되고 말았다. 본고에서는 근세 대마도에 대한 한국과 일본의 인식을 주로 영토와 경계인 식을 중심으로 고찰하고자 한다. 이 시기 대마도에 대한 한일 양국의 인식을 살펴볼 때는 근대 국민국가적 관점에서 탈피할


제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * The Grounds and Cons

<C7D1B9CEC1B7BEEEB9AEC7D03631C1FD28C3D6C1BE292E687770>

44-4대지.07이영희532~

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: * Review of Research

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

Journal of Educational Innovation Research 2016, Vol. 26, No. 2, pp DOI: * The Mediating Eff

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

09구자용(489~500)

<C3D6C1BEBAB8B0EDBCAD5FC7A5C1F62E687770>

03-ÀÌÁ¦Çö

04_이근원_21~27.hwp

2_11_24 김준수.hwp

_ _ Reading and Research in Archaeology. _ Reading and Research in Korean Historical Texts,,,,,. _Reading and Research in Historical Materials from Ko

<313120B9DABFB5B1B82E687770>


Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

Transcription:

J. Ecol. Field Biol. 29 (3): 265 275, 2006 대구인접지역삼림식생의진행천이와잠재자연식생 정흥락 * 전영문 1 이호준 1, 1 Progressive Succession and Potential Natural Vegetation on the Forest Vegetation in and surrounding Daegu, Korea Choung, Heung-Lak*, Young-Moon Chun 1 and Ho-Joon Lee 1 Korea Environment Institute, Seoul 122-706, Korea 1 Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea ABSTRACT: This study represents the mechanism of progressive succession and potential natural vegetation on the forest vegetation in and surrounding Daegu. As a result of DCA, the feature of community was determined by an altitude and humid gradients. The soil moisture, contents of organic matter and total nitrogen increased as the community developed. In the interspecific association analysis, the forest vegetation was divided into two species groups and they were influenced by temperature and soil moisture. Especially, each two groups showed different stages of vegetation development according to the progressive succession and life form composition supported those results. It was predicted that Quercus variabilis, Q. acutissima, Q. dentata and Pinus densiflora communities would develop into Q. serrata community or Q. mongolica community depending on their location or species composition. In the study area, the potential natural vegetation was divided into 3 communities by biogeographical gradients such as species composition, soil environment, and geographical features: 1) Q. mongolica community in the middle-upper area of the mountain, 2) Q. serrata community in the middle-lower area of the mountain and 3) Carpinus cordata-acer mono community in the cove area. It is suggested that the Q.mongolica and C.cordata-A. mono communities become actual vegetation and potential natural vegetation. But it is also suggested that the P. densiflora community would be changed into the potential natural vegetation of the Q. mongolica community and Q. serrata community on the basis of the present species composition. Key words: DCA, Daegu, Forest vegetation, Interspecific association, Life form, Potential natural vegetation, Progressive succession 서론 (Shugart 1984), (McCook 1994)., (Peet 1992), (Arsenault and Bradfield 1995, Brulisauer et al. 1996) (Clark et al. 2003)., (Shugart 1984, Pickett and White 1985, Smith and Huston 1989), Clark et al.(2003) 2, (gap dynamics). (successional trajectories), (Pickett et al. 1989, Pickett and Cadenasso 2005).,, (Connell and Slatyer 1977), (progressive succession) (Choung and Hong 2006)., (vegetation dynamics) (Pickett and Cadenasso 2005)., (Tüxen 1956, Westhoff and van der Maarel 1978), (Ellenberg 1988). * Corresponding author; Phone: +82-2-380-7752, e-mail: chlak@kei.re.kr

266 J. Ecol. Field Biol. 29 (3),,, (Brzeziecki et al. 1993),.,,, (Brzeziecki et al. 1993),. (Kim and Yim 1987, 1988, 1990, Lee 1997, 1998). Kim and Yim (1988),,,, Kim(1992) / ( - ), / ( - ), / ( - ) 3. Pavel et al.(2006),. (2000) (11 ) DCA,,. 재료및방법 (2000), 2 (, ),,,, - (,, ), (,, ).,,,,,. 6, 8 5 11., (2000) -. (2000) ( 200 relevé) DCA(Detrended Correspondence Analysis) (McCune and Mefford 1999), ( 1996)., (2000) 3 ( 60 ). A 1, ph, (Tyurin ), (Kjeldahl ), P 2O 5(Lancaster ), K( ), Ca Mg(EDTA ), ( 2000). 2 cm, (DBH, Diameter at Breast Height). 결과 DCA 분석 DCA 200 11 (Fig 1, Table 1)., 1 2 1,, 2,,,,., -. 3, 1, 2., -.,, (Table 2)., Fig. 1. Projection of 200 relevés based on DECORANA in the study area. The abbreviations of community type are the same as the vegetation units of Table 1.

2006 6 267 Table 1. The abbreviation and name of communities are used in DCA analysis Abbreviation Vegetation Unit - A : Quercus mongolica community a A-1 : Typical subcommunity b A-2 : Carex siderosticta subcommunity B B : Quercus variabilis community C C : Quercus acutissima community D D : Quercus dentata community - E : Carpinus cordata-acer mono community r E-1 : Typical subcommunity s E-2 : Quercus serrata subcommunity t E-3 : Cornus controversa subcommunity - F: Pinus densiflora community x F-1 : Typical subcommunity y F-2 : Sanguisorba officinalis subcommunity, -.,., -,. 종간연관 (Interspecific Association) χ 2 (Affinity Analysis) 2 (Fig. 2, Table 3). Group ( 101), (103), (106), (108), (109), (110), (111), (112), (117), (120), (121), (124), (128), (133), (134), (137), (139), (145), (147), (148), (149), (152), (154), (159), (160), (161), z F-3 : Rhododendron schlippenbachii subcommunity G H I J K G : Robinia pseudoacacia afforestation H : Pinus rigida afforestation I : Larix leptolepis afforestation J : Pinus thunbergii afforestation K : Pinus koraiensis afforestation Table 2. Comparison of constancy on the 3 dominant trees among communities Vegetation Unit Quercus mongolica Quercus serrata Acer mono A A-1 (3-5) (+) (+) A-2 (4-5) (+) (+-1) B (+-1) (+-2) (+-1) C (+-2) (+-2) (+) D 0 1(+) 0 E-1 (+-1) 0 (+-3) E E-2 0 4(2-4) 3(1-3) E-3 0 0 4(+-1) F-1 0 (+-4) 0 F F-2 0 (+-2) 0 F-3 (+-2) (+-2) 0 G 0 (+-2) 0 H (+) (+-2) 0 I (+) (+-3) 0 J 0 2(+-1) 0 K 2(+-2) 2(+) 0 Fig. 2. Plexus diagram of plant species based on significant associations according to chi-square (solid line: p<0.01, dotted line: 0.01<p<0.05). Species numbers are in table 3.

268 J. Ecol. Field Biol. 29 (3) Table 3. The list of code numbers of species used by affinity analysis Table 3. Continued No. Scientific Name No. Scientific Name 101 Carex humilis 136 Viola rossii 102 Rhododendron mucronulatum var. ciliatum 103 Rhus trichocarpa 104 Lindera obtusiloba 105 Spodiopogon sibiricus 106 Pinus densiflora 107 Artemisia keiskeana 108 Potentilla freyniana 109 Pyrola japonica 110 Cocculus trilobus 111 Zanthoxylum schinifolium 112 Quercus serrata 113 Aster scaber 114 Athyrium yokoscense 115 Quercus mongolica 116 Isodon japonica 117 Atractylodes japonica 118 Lespedeza maximowiczii 119 Chrysanthemum zawadskii 120 Lespedeza bicolor 121 Smilax china 122 Polygonatum odoratum var. pluriflorum 123 Fraxinus sieboldiana 124 Quercus variabilis 125 Carex lanceolata 126 Rhododendron schlippenbachii 127 Smilax nipponica 128 Sanguisorba officinalis 129 Dryopteris bissetiana sp. 130 Hosta longipes 131 Miscanthus sinensis var. purpurascens 132 Carex ciliato-marginata 133 Juniperus rigida 134 Indigofera kirilowii 135 Asarum sieboldii 137 Sedum kamtschaticum 138 Symplocos chinensis for. pilosa 139 Quercus dentata 140 Disporum smilacinum 141 Smilax sieboldii 142 Viola patrinii 143 Iris rossii 144 Prunus sargentii 145 Peucedanum terebinthaceum 146 Acer pseudo-sieboldianum 147 Solidago virga-aurea var. asiatica 148 Ligustrum obtusifolium 149 Quercus aliena 150 Astilbe chinensis var. davidii 151 Fraxinus rhynchophylla 152 Clematis mandshurica 153 Euonymus alatus for. ciliato-dentatus 154 Pteridium aquilinum var. latiusculum 155 Celastrus orbiculatus 156 Lysimachia clethroides 157 Sorbus alnifolia 158 Melampyrum roseum 159 Patrinia villosa 160 Chimaphila japonica 161 Quercus acutissima 162 Oplismenus undulatifolius 163 Polygonatum lasianthum var. coreanum 164 Lindera glauca 165 Artemisia stolonifera 166 Carex siderosticta 167 Tripterygium regelii 168 Rubus crataegifolius 169 Calamagrostis arundinacea 170 Cephalanthera longibracteata

2006 6 269 Table 3. Continued Table 3. Continued No. Scientific Name No. Scientific Name 171 Carex okamotoi 172 Pseudostellaria palibiniana 173 Commelina communis 174 Styrax japonica 175 Hydrangea serrata for. acuminata 176 Vitis amurensis 177 Hemerocallis fulva 178 Convallaria keiskei 179 Pueraria thunbergiana 180 Corylus sieboldiana var. mandshurica 181 Weigela subsessilis 182 Serratula coronata var. insularis 183 Rosa maximowicziana 184 Styrax obassia 185 Dioscorea japonica 186 Ampelopsis brevipedunculata var. heterophylla 187 Securinega suffruticosa 188 Stephanandra incisa 189 Rubus parvifolius 190 Lindera erythrocarpa 191 Calamagrostis epigeios 192 Cynanchum paniculatum 193 Robinia pseudoacacia 194 Polygonatum involucratum 195 Adenophora triphylla var. japonica 196 Lonicera subhispida 197 Asperula maximowiczii 198 Carpinus cordata 199 Ainsliaea acerifolia 200 Platycodon grandiflorum 201 Viola collina 202 Dioscorea nipponica 203 Rhus chinensis 204 Leibnitzia anandria 205 Potentilla fragarioides var. major 206 Schizandra chinensis 207 Lonicera japonica 208 Rosa multiflora 209 Viola albida 210 Lilium tsingtauense (164), (174), (179), (185), (189), (192), Group (114), (115), (126), (135), (136), (138), (146), (150), (157), (158), (165), (166), (167), (169), (171), (172), (175), (176), (194), (197), (198), (199), (202), (209), (210). Fig. 2, Group, Group. 생활형조성비 435 31.5%, 27.2%, 25.3%, 8.6%, 5.0%, 1.7%, 0.7%., - 3.4% 0.9% 4.0% (Fig. 3).,, 244 263 152. (G), (H), (G), (H), (H), (G), (Ph), (G), (G), (G), (G), (G), (Ph) 91, (Ph), (Ch), (H), (H), (G), (Ch), (Th), (H), (H), (H), (H), (G), (G), (Ph) 111. 흉고직경분포 Fig. 4. 6 10 cm,

270 J. Ecol. Field Biol. 29 (3) Fig. 3. Comparison of life form among Quercus mongolica community, Carpinus cordata-acer mono community and Pinus densiflora community. Ph: Phanerophyte, Ch: Chamaephyte, H: Hemicryptophyte, G: Geophyte, Th: Therophyte, E: Epiphyte, HH: Hydrophyte 11 15 cm., 6 10 cm, 11 cm (Fig. 4A, 4B). 6 10cm, 11 15 cm., J, ( ). 2 5 cm. - 11 15 cm, 6 10 cm, 16 20 cm (Fig. 4C, 4D). Fig. 4. The distribution of diameter at breast height (DBH) Quercus mongolica and Pinus densiflora in Quercus mongolica community (A) and Pinus densiflora community (B). C is DBH among different communities and D is DBH of dominant tree species in Carpinus cordata-acer mono community. The abbreviations of community type are the same as vegetation units of Table 1

2006 6 271 (1981). (Table 4), ph 5.27 4.33%. ph 5.65, 5.00.,, - ph. 8.03% 7.38%,., - 0.51 0.56%. (p<0.001) (Table 5),, (p<0.01). ph, Ca ph, Mg ph (p<0.001). (K Ca, Mg Ca) (p<0.001)., p<0.001., Ca, Mg, EC.,, -,,.,.. (Fig. 5). 고찰,,,,,,. DCA Table 4. The result of soil analysis in the study area Co. ph OM (%) T-N (%) P 2O 5 (ppm) Exchangable Cation (me/100g) K Ca Mg EC (ms/cm) A (n=10) 5.11 ± 0.08 8.03 ± 1.09 0.51 ± 0.04 16.3 ± 2.82 0.17 ± 0.02 0.66 ± 0.38 0.38 ± 0.12 0.69 ± 0.11 B (n=4) 5.33 ± 0.03 3.47 ± 1.15 0.22 ± 0.07 6.0 ± 0.71 0.18 ± 0.07 1.19 ± 0.70 1.47 ± 0.69 0.65 ± 0.15 C (n=4) 5.38 ± 0.09 2.50 ± 0.77 0.21 ± 0.05 9.3 ± 2.17 0.24 ± 0.01 0.64 ± 0.45 0.74 ± 0.28 0.69 ± 0.17 D (n=3) 5.35 ± 0.35 7.38 ± 0.20 0.55 ± 0.02 12.5 ± 5.50 0.30 ± 0.20 2.57 ± 2.57 1.18 ± 0.88 0.91 ± 0.14 E (n=8) 5.43 ± 0.15 6.08 ± 0.28 0.56 ± 0.05 21.8 ± 3.60 0.26 ± 0.05 1.38 ± 0.58 0.69 ± 0.27 0.30 ± 0.11 F (n=14) 5.34 ± 0.07 2.27 ± 0.38 0.20 ± 0.02 8.8 ± 1.89 0.21 ± 0.04 1.80 ± 0.80 1.17 ± 0.30 0.67 ± 0.09 G (n=6) 5.00 ± 0.12 3.14 ± 0.82 0.20 ± 0.05 11.3 ± 1.50 0.30 ± 0.10 2.16 ± 1.08 0.79 ± 0.17 0.83 ± 0.14 H (n=3) 5.10 ± 0.10 1.74 ± 0.62 0.18 ± 0.00 18.0 ± 0.00 0.10 ± 0.00 0.10 ± 0.07 0.12 ± 0.02 0.78 ± 0.09 I (n=3) 5.20 ± 0.23 3.63 ± 0.61 0.29 ± 0.05 23.3 ± 11.9 0.07 ± 0.04 0.36 ± 0.36 0.22 ± 0.05 0.69 ± 0.14 J (n=3) 5.65 ± 0.05 1.87 ± 0.27 0.13 ± 0.04 11.5 ± 6.50 0.48 ± 0.22 5.22 ± 0.79 5.16 ± 3.58 0.84 ± 0.13 K (n=3) 5.15 ± 0.05 4.03 ± 0.73 0.22 ± 0.10 21.0 ± 11.0 0.25 ± 0.04 0.62 ± 0.30 0.34 ± 0.11 0.25 ± 0.03 Total (n=60) 5.27 ± 0.04 4.33 ± 0.39 0.32 ± 0.03 14.2 ± 1.21 0.23 ± 0.02 1.45 ± 0.28 0.93 ± 0.17 0.64 ± 0.04 * Co. : Community types * A: Quercus mongolica community, B: Q. variabilis community, C: Q. acutissima community, D: Q. dentata community, E: Carpinus cordata- Acer mono community F: Pinus densiflora community, G: Robinia pseudoacacia afforestation, H: Pinus rigida afforestation, I: Larix leptolepis afforestation, J: Pinus thunbergii afforestation, K: Pinus koraiensis afforestation * OM: Organic matter, T-N: Total nitrogen, EC: Electric conductivity * The arabic numbers indicate mean values ± SE(standard error)

272 J. Ecol. Field Biol. 29 (3) Table 5. Correlation coefficients among the chemical properties of soil including altitude. Asterisks on numbers indicate significant level. ph OM T-N P 2O 5 K Ca Mg EC Al. SMC ph 1.000-0.142 0.087-0.441 ** 0.540 *** 0.456 *** -0.208-0.083-0.286 OM 1.000 0.802 *** 0.357 ** 0.078 0.068-0.199-0.209 0.717 *** 0.883 * T-N 1.000 0.384 ** 0.093 0.009-0.164-0.211 0.734 *** 0.922 ** P 2O 5 1.000-0.003-0.217-0.328 * -0.091 0.341 ** 0.797 K 1.000 0.588 *** 0.285 * -0.146-0.041 0.439 Ca 1.000 0.654 *** 0.121-0.266 * 0.179 Mg 1.000 0.143-0.355 ** -0.659 EC 1.000-0.261 * 0.026 Al. 1.000 0.590 *** SMC 1.000 OM: Organic matter, T-N: Total nitrogen, EC: Electric conductivity, SMC: Soil moisture content, Al.: Altitude, *:p< 0.05, **:p< 0.01, ***:p< 0.001 Fig. 5. Correlation between soil moisture content(smc) and altitude in the study area. Key to symbols - : Carex siderosticta subco. of Quercus mongolica co., : Typical subco. of Q. mongolica co., : Rhododendron schlippenbachii subco. of Pinus densiflora co., : Typical subco. and Sanguisorba officinalis subco. of Pinus densiflora co., : Carpinus cordata-acer mono co., : Q. dentata co., : Q. acutissima co., : Q. variabilis co., co.: community, subco.: subcommunity.,,,. (p<0.001) ( 1993, 2005).,,. ( ),.. (1988) Lactuca serriola.., -., (Cain 1950). (1993)..,

2006 6 273 (Choung and Hong 2006). -.,, (Crocker and Major 1955, Olson 1958, 1977).,.,., 6 10 cm (Fig. 4B), J (Austin 1977, Despain 1983, 2003).. (Tüxen 1956, 1997). (Chun et al. 2006)., (Fig. 6). Group,,,,,, Group -. DCA. Group Group. Group ( ) Group. ( ). ( 600m )., - Fig. 6. Possibile developmental stages in the studied forest. Quercus serrata co. left a question as to whether or not potential natural vegetation in the lower-sphere of the cold-temperate deciduous broad-leaved forest. co. : community, subco. : subcommunity. -.,., ( 1983, 2003),. (Barnes et al. 1998, Choung et al. 2004, 2004)., ( 2000). J,..,,,, ( 7.8 14.2, 580.2 775.6 mm) (Chen 1995)..

274 J. Ecol. Field Biol. 29 (3), Pinus contorta Abies lasiocarpa 200 (Clark et al. 2003). 50 100 (Clark et al. 2003). -,,,,,,,,. Kim(1992) - -,.,,.,, -,,.,,, (Fig. 6). ( ),, - (Fig. 1, 6). 적요. DCA,. 2,.,,.,,.,, -, 3. -,. 감사의글. 인용문헌,,. 1983.. 6: 237-242.. 2000.. 450p.,,. 1998.. 21: 283-290.,. 1993.. 16: 439-457.. 1988. Lactuca serriola.. p 43..,,. 1990. Classification Ordination. 33: 173-182.,,,,,. 2004.. 27: 99-106.. 1981. ( ). 54: 25-35.. 1996.... 1688p.,. 2005.. 28: 69-77.,,,. 2003.. 26: 223-236.,,,. 1993.. 16: 239-259.,. 1992.... 467p.,,. 2000.. 23: 407-421. Arsenault A, Bradfield GE. 1995. Structural-compositional variation in three age-classes of temperate rainforests in southern coastal British Columbia. Can J Bot 73:54-64. Austin MP. 1977. Use of ordination and other multivariate descriptive methods to study succession. Vegetatio 35: 165-176. Barnes BV, Zak DR, Denton SR, Apurr SH. 1998. Forest Ecology (4ed). John wiley and Sons, New York. Brulisauer AR, Bradfield GE, Maze J. 1996. Quantifying organizational change after fire in lodgepole pine forest understory. Can J Bot 74: 1773-1782. Brzeziecki B, Kienast F, Wildi O. 1993. A simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4: 499-508.

2006 6 275 Cain SA. 1950. Life-forms and phytoclimate. Bot Rev 16:1-32. Chen LZ. 1995. Deciduous broad-leaved forests in North-Central China. in E.O. Box et al.(eds.), Vegetation Science in Forestry. Kluwer Academic Publishers. Dordrecht. pp 255-271. Choung HL, Hong SK. 2006. Distribution patterns, floristic differentiation and succession of Pinus densiflora forest in South Korea: A perspective at nation-wide scale. Phytocoenologia 36(2): 1-17 (DOI: 10.1127/0340-269X/2006/0036-0001). Choung Y, Lee BC, Cho JH, Lee KS, Jang IS, Kim SH, Hong SK, Jung HC, Choung HL. 2004. Forest responses to the large-scale east coast fires in Korea. Ecol Res 19: 43-54. Chun YM, Lee HJ, Lee CS. 2006. Vegetation trajectories of Korean Red Pine (Pinus densiflora Sieb. et Zucc.) forests at Mt. Seorak, Korea. J Plant Biol 49: 141-152. Clark DF, Antos JA, Bradfield GE. 2003. Succession in sub-boreal forests of West-Central British Columbia. J Veg Sci 14: 721-732. Connell JH, Slatyer RO. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111: 1119-1144. Crocker RL, Major J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay. Alaska. J Ecol 43: 427-448. Despain DG. 1983. Nonpyrogenous climax lodgepole pine communities in Yellowstone National Park. Ecology 64: 231-234. Ellenberg H. 1988. Vegetation ecology of Central Europe. University Press, Cambridge. Kim JU, Yim YJ. 1987. Actual vegetation and potential natural vegetation of Seonunsan Area, Southwestern Korea. Korean J Ecol 10: 159-164. Kim JU, Yim YJ. 1988. Phytosociological classification of plant communities in Mt. Naejang, southwestern Korea. Korean J Bot 31: 1-31. Kim JW. 1992. Vegetation of northeast Asia on the syntaxonomy and syngeography of the oak and beech forests. Ph.D. Thesis, Wien University. p 314. Lee EB. 1997. Actual vegetation and potential natural vegetation of Pukhansan National Park, Mid-western Korea. Korean J Ecol 20: 439-450. McCook LJ. 1994. Understanding ecological community succession : Causal models and theories, a review. Vegetatio 110: 115-147. McCune B, Mefford MJ. 1999. PC-ORD, multivariate analysis of ecological data. Version 4. MjM Software Design. Gleneden Beach- Oregon. USA. Olson JS. 1958. Rates of succession and soil changes on southern Lake Michigan sand dunes. Bot Gaz 119: 125-170. Pavel VK, Song JS, Nakamura Y, Verkholat VP. 2006. A phytosociological survey of the deciduous temperate forests of mainland Northeast Asia. Phytocoenologia 36: 77-150. Peet RK. 1992. Community structure and function. In: Glenn-Lewin, D.C., Peet, R.K. and Veblen, T.T. (eds.) Plant succession, theory and prediction, pp. 103-151. Chapman and Hall, New York, NY, US. Pickett STA, Cadenasso ML. 2005. Vegetation dynamics. In: Vegetation Ecology. (van der Maarel, eds). Blackwell Science Ltd, Oxford, pp 172-198. Pickett STA, Kolasa J, Armesto JJ, Collins SL. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54: 129-136. Pickett STA, White PS. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, FL, US. Shugart HH. 1984. A theory of forest dynamics: The ecological implications of forest succession models. Springer-Verlag, New York. Smith T, Huston M. 1989. A theory of the spatial and temporal dynamics of plant communities. Vegetatio 83: 46-69. Tüxen R. 1956. Die heutige potentielle naturliche Vegetation als Gegenstand der Vegetationskartierung. Angew. Pflanzensoziologie 13: 5-42. Westhoff V, van der Maarel E. 1978. The Braun-Blanquet approach. In: Whittaker, R.H.(ed.) Classification of plant communities, pp 287-374. Junk, The Hague.. 1997.. NNT.. 244p.. 1977... (2006 5 31 ; 2006 6 16 )