J. Ecol. Field Biol. 29 (3): 265 275, 2006 대구인접지역삼림식생의진행천이와잠재자연식생 정흥락 * 전영문 1 이호준 1, 1 Progressive Succession and Potential Natural Vegetation on the Forest Vegetation in and surrounding Daegu, Korea Choung, Heung-Lak*, Young-Moon Chun 1 and Ho-Joon Lee 1 Korea Environment Institute, Seoul 122-706, Korea 1 Department of Biological Sciences, Konkuk University, Seoul 143-701, Korea ABSTRACT: This study represents the mechanism of progressive succession and potential natural vegetation on the forest vegetation in and surrounding Daegu. As a result of DCA, the feature of community was determined by an altitude and humid gradients. The soil moisture, contents of organic matter and total nitrogen increased as the community developed. In the interspecific association analysis, the forest vegetation was divided into two species groups and they were influenced by temperature and soil moisture. Especially, each two groups showed different stages of vegetation development according to the progressive succession and life form composition supported those results. It was predicted that Quercus variabilis, Q. acutissima, Q. dentata and Pinus densiflora communities would develop into Q. serrata community or Q. mongolica community depending on their location or species composition. In the study area, the potential natural vegetation was divided into 3 communities by biogeographical gradients such as species composition, soil environment, and geographical features: 1) Q. mongolica community in the middle-upper area of the mountain, 2) Q. serrata community in the middle-lower area of the mountain and 3) Carpinus cordata-acer mono community in the cove area. It is suggested that the Q.mongolica and C.cordata-A. mono communities become actual vegetation and potential natural vegetation. But it is also suggested that the P. densiflora community would be changed into the potential natural vegetation of the Q. mongolica community and Q. serrata community on the basis of the present species composition. Key words: DCA, Daegu, Forest vegetation, Interspecific association, Life form, Potential natural vegetation, Progressive succession 서론 (Shugart 1984), (McCook 1994)., (Peet 1992), (Arsenault and Bradfield 1995, Brulisauer et al. 1996) (Clark et al. 2003)., (Shugart 1984, Pickett and White 1985, Smith and Huston 1989), Clark et al.(2003) 2, (gap dynamics). (successional trajectories), (Pickett et al. 1989, Pickett and Cadenasso 2005).,, (Connell and Slatyer 1977), (progressive succession) (Choung and Hong 2006)., (vegetation dynamics) (Pickett and Cadenasso 2005)., (Tüxen 1956, Westhoff and van der Maarel 1978), (Ellenberg 1988). * Corresponding author; Phone: +82-2-380-7752, e-mail: chlak@kei.re.kr
266 J. Ecol. Field Biol. 29 (3),,, (Brzeziecki et al. 1993),.,,, (Brzeziecki et al. 1993),. (Kim and Yim 1987, 1988, 1990, Lee 1997, 1998). Kim and Yim (1988),,,, Kim(1992) / ( - ), / ( - ), / ( - ) 3. Pavel et al.(2006),. (2000) (11 ) DCA,,. 재료및방법 (2000), 2 (, ),,,, - (,, ), (,, ).,,,,,. 6, 8 5 11., (2000) -. (2000) ( 200 relevé) DCA(Detrended Correspondence Analysis) (McCune and Mefford 1999), ( 1996)., (2000) 3 ( 60 ). A 1, ph, (Tyurin ), (Kjeldahl ), P 2O 5(Lancaster ), K( ), Ca Mg(EDTA ), ( 2000). 2 cm, (DBH, Diameter at Breast Height). 결과 DCA 분석 DCA 200 11 (Fig 1, Table 1)., 1 2 1,, 2,,,,., -. 3, 1, 2., -.,, (Table 2)., Fig. 1. Projection of 200 relevés based on DECORANA in the study area. The abbreviations of community type are the same as the vegetation units of Table 1.
2006 6 267 Table 1. The abbreviation and name of communities are used in DCA analysis Abbreviation Vegetation Unit - A : Quercus mongolica community a A-1 : Typical subcommunity b A-2 : Carex siderosticta subcommunity B B : Quercus variabilis community C C : Quercus acutissima community D D : Quercus dentata community - E : Carpinus cordata-acer mono community r E-1 : Typical subcommunity s E-2 : Quercus serrata subcommunity t E-3 : Cornus controversa subcommunity - F: Pinus densiflora community x F-1 : Typical subcommunity y F-2 : Sanguisorba officinalis subcommunity, -.,., -,. 종간연관 (Interspecific Association) χ 2 (Affinity Analysis) 2 (Fig. 2, Table 3). Group ( 101), (103), (106), (108), (109), (110), (111), (112), (117), (120), (121), (124), (128), (133), (134), (137), (139), (145), (147), (148), (149), (152), (154), (159), (160), (161), z F-3 : Rhododendron schlippenbachii subcommunity G H I J K G : Robinia pseudoacacia afforestation H : Pinus rigida afforestation I : Larix leptolepis afforestation J : Pinus thunbergii afforestation K : Pinus koraiensis afforestation Table 2. Comparison of constancy on the 3 dominant trees among communities Vegetation Unit Quercus mongolica Quercus serrata Acer mono A A-1 (3-5) (+) (+) A-2 (4-5) (+) (+-1) B (+-1) (+-2) (+-1) C (+-2) (+-2) (+) D 0 1(+) 0 E-1 (+-1) 0 (+-3) E E-2 0 4(2-4) 3(1-3) E-3 0 0 4(+-1) F-1 0 (+-4) 0 F F-2 0 (+-2) 0 F-3 (+-2) (+-2) 0 G 0 (+-2) 0 H (+) (+-2) 0 I (+) (+-3) 0 J 0 2(+-1) 0 K 2(+-2) 2(+) 0 Fig. 2. Plexus diagram of plant species based on significant associations according to chi-square (solid line: p<0.01, dotted line: 0.01<p<0.05). Species numbers are in table 3.
268 J. Ecol. Field Biol. 29 (3) Table 3. The list of code numbers of species used by affinity analysis Table 3. Continued No. Scientific Name No. Scientific Name 101 Carex humilis 136 Viola rossii 102 Rhododendron mucronulatum var. ciliatum 103 Rhus trichocarpa 104 Lindera obtusiloba 105 Spodiopogon sibiricus 106 Pinus densiflora 107 Artemisia keiskeana 108 Potentilla freyniana 109 Pyrola japonica 110 Cocculus trilobus 111 Zanthoxylum schinifolium 112 Quercus serrata 113 Aster scaber 114 Athyrium yokoscense 115 Quercus mongolica 116 Isodon japonica 117 Atractylodes japonica 118 Lespedeza maximowiczii 119 Chrysanthemum zawadskii 120 Lespedeza bicolor 121 Smilax china 122 Polygonatum odoratum var. pluriflorum 123 Fraxinus sieboldiana 124 Quercus variabilis 125 Carex lanceolata 126 Rhododendron schlippenbachii 127 Smilax nipponica 128 Sanguisorba officinalis 129 Dryopteris bissetiana sp. 130 Hosta longipes 131 Miscanthus sinensis var. purpurascens 132 Carex ciliato-marginata 133 Juniperus rigida 134 Indigofera kirilowii 135 Asarum sieboldii 137 Sedum kamtschaticum 138 Symplocos chinensis for. pilosa 139 Quercus dentata 140 Disporum smilacinum 141 Smilax sieboldii 142 Viola patrinii 143 Iris rossii 144 Prunus sargentii 145 Peucedanum terebinthaceum 146 Acer pseudo-sieboldianum 147 Solidago virga-aurea var. asiatica 148 Ligustrum obtusifolium 149 Quercus aliena 150 Astilbe chinensis var. davidii 151 Fraxinus rhynchophylla 152 Clematis mandshurica 153 Euonymus alatus for. ciliato-dentatus 154 Pteridium aquilinum var. latiusculum 155 Celastrus orbiculatus 156 Lysimachia clethroides 157 Sorbus alnifolia 158 Melampyrum roseum 159 Patrinia villosa 160 Chimaphila japonica 161 Quercus acutissima 162 Oplismenus undulatifolius 163 Polygonatum lasianthum var. coreanum 164 Lindera glauca 165 Artemisia stolonifera 166 Carex siderosticta 167 Tripterygium regelii 168 Rubus crataegifolius 169 Calamagrostis arundinacea 170 Cephalanthera longibracteata
2006 6 269 Table 3. Continued Table 3. Continued No. Scientific Name No. Scientific Name 171 Carex okamotoi 172 Pseudostellaria palibiniana 173 Commelina communis 174 Styrax japonica 175 Hydrangea serrata for. acuminata 176 Vitis amurensis 177 Hemerocallis fulva 178 Convallaria keiskei 179 Pueraria thunbergiana 180 Corylus sieboldiana var. mandshurica 181 Weigela subsessilis 182 Serratula coronata var. insularis 183 Rosa maximowicziana 184 Styrax obassia 185 Dioscorea japonica 186 Ampelopsis brevipedunculata var. heterophylla 187 Securinega suffruticosa 188 Stephanandra incisa 189 Rubus parvifolius 190 Lindera erythrocarpa 191 Calamagrostis epigeios 192 Cynanchum paniculatum 193 Robinia pseudoacacia 194 Polygonatum involucratum 195 Adenophora triphylla var. japonica 196 Lonicera subhispida 197 Asperula maximowiczii 198 Carpinus cordata 199 Ainsliaea acerifolia 200 Platycodon grandiflorum 201 Viola collina 202 Dioscorea nipponica 203 Rhus chinensis 204 Leibnitzia anandria 205 Potentilla fragarioides var. major 206 Schizandra chinensis 207 Lonicera japonica 208 Rosa multiflora 209 Viola albida 210 Lilium tsingtauense (164), (174), (179), (185), (189), (192), Group (114), (115), (126), (135), (136), (138), (146), (150), (157), (158), (165), (166), (167), (169), (171), (172), (175), (176), (194), (197), (198), (199), (202), (209), (210). Fig. 2, Group, Group. 생활형조성비 435 31.5%, 27.2%, 25.3%, 8.6%, 5.0%, 1.7%, 0.7%., - 3.4% 0.9% 4.0% (Fig. 3).,, 244 263 152. (G), (H), (G), (H), (H), (G), (Ph), (G), (G), (G), (G), (G), (Ph) 91, (Ph), (Ch), (H), (H), (G), (Ch), (Th), (H), (H), (H), (H), (G), (G), (Ph) 111. 흉고직경분포 Fig. 4. 6 10 cm,
270 J. Ecol. Field Biol. 29 (3) Fig. 3. Comparison of life form among Quercus mongolica community, Carpinus cordata-acer mono community and Pinus densiflora community. Ph: Phanerophyte, Ch: Chamaephyte, H: Hemicryptophyte, G: Geophyte, Th: Therophyte, E: Epiphyte, HH: Hydrophyte 11 15 cm., 6 10 cm, 11 cm (Fig. 4A, 4B). 6 10cm, 11 15 cm., J, ( ). 2 5 cm. - 11 15 cm, 6 10 cm, 16 20 cm (Fig. 4C, 4D). Fig. 4. The distribution of diameter at breast height (DBH) Quercus mongolica and Pinus densiflora in Quercus mongolica community (A) and Pinus densiflora community (B). C is DBH among different communities and D is DBH of dominant tree species in Carpinus cordata-acer mono community. The abbreviations of community type are the same as vegetation units of Table 1
2006 6 271 (1981). (Table 4), ph 5.27 4.33%. ph 5.65, 5.00.,, - ph. 8.03% 7.38%,., - 0.51 0.56%. (p<0.001) (Table 5),, (p<0.01). ph, Ca ph, Mg ph (p<0.001). (K Ca, Mg Ca) (p<0.001)., p<0.001., Ca, Mg, EC.,, -,,.,.. (Fig. 5). 고찰,,,,,,. DCA Table 4. The result of soil analysis in the study area Co. ph OM (%) T-N (%) P 2O 5 (ppm) Exchangable Cation (me/100g) K Ca Mg EC (ms/cm) A (n=10) 5.11 ± 0.08 8.03 ± 1.09 0.51 ± 0.04 16.3 ± 2.82 0.17 ± 0.02 0.66 ± 0.38 0.38 ± 0.12 0.69 ± 0.11 B (n=4) 5.33 ± 0.03 3.47 ± 1.15 0.22 ± 0.07 6.0 ± 0.71 0.18 ± 0.07 1.19 ± 0.70 1.47 ± 0.69 0.65 ± 0.15 C (n=4) 5.38 ± 0.09 2.50 ± 0.77 0.21 ± 0.05 9.3 ± 2.17 0.24 ± 0.01 0.64 ± 0.45 0.74 ± 0.28 0.69 ± 0.17 D (n=3) 5.35 ± 0.35 7.38 ± 0.20 0.55 ± 0.02 12.5 ± 5.50 0.30 ± 0.20 2.57 ± 2.57 1.18 ± 0.88 0.91 ± 0.14 E (n=8) 5.43 ± 0.15 6.08 ± 0.28 0.56 ± 0.05 21.8 ± 3.60 0.26 ± 0.05 1.38 ± 0.58 0.69 ± 0.27 0.30 ± 0.11 F (n=14) 5.34 ± 0.07 2.27 ± 0.38 0.20 ± 0.02 8.8 ± 1.89 0.21 ± 0.04 1.80 ± 0.80 1.17 ± 0.30 0.67 ± 0.09 G (n=6) 5.00 ± 0.12 3.14 ± 0.82 0.20 ± 0.05 11.3 ± 1.50 0.30 ± 0.10 2.16 ± 1.08 0.79 ± 0.17 0.83 ± 0.14 H (n=3) 5.10 ± 0.10 1.74 ± 0.62 0.18 ± 0.00 18.0 ± 0.00 0.10 ± 0.00 0.10 ± 0.07 0.12 ± 0.02 0.78 ± 0.09 I (n=3) 5.20 ± 0.23 3.63 ± 0.61 0.29 ± 0.05 23.3 ± 11.9 0.07 ± 0.04 0.36 ± 0.36 0.22 ± 0.05 0.69 ± 0.14 J (n=3) 5.65 ± 0.05 1.87 ± 0.27 0.13 ± 0.04 11.5 ± 6.50 0.48 ± 0.22 5.22 ± 0.79 5.16 ± 3.58 0.84 ± 0.13 K (n=3) 5.15 ± 0.05 4.03 ± 0.73 0.22 ± 0.10 21.0 ± 11.0 0.25 ± 0.04 0.62 ± 0.30 0.34 ± 0.11 0.25 ± 0.03 Total (n=60) 5.27 ± 0.04 4.33 ± 0.39 0.32 ± 0.03 14.2 ± 1.21 0.23 ± 0.02 1.45 ± 0.28 0.93 ± 0.17 0.64 ± 0.04 * Co. : Community types * A: Quercus mongolica community, B: Q. variabilis community, C: Q. acutissima community, D: Q. dentata community, E: Carpinus cordata- Acer mono community F: Pinus densiflora community, G: Robinia pseudoacacia afforestation, H: Pinus rigida afforestation, I: Larix leptolepis afforestation, J: Pinus thunbergii afforestation, K: Pinus koraiensis afforestation * OM: Organic matter, T-N: Total nitrogen, EC: Electric conductivity * The arabic numbers indicate mean values ± SE(standard error)
272 J. Ecol. Field Biol. 29 (3) Table 5. Correlation coefficients among the chemical properties of soil including altitude. Asterisks on numbers indicate significant level. ph OM T-N P 2O 5 K Ca Mg EC Al. SMC ph 1.000-0.142 0.087-0.441 ** 0.540 *** 0.456 *** -0.208-0.083-0.286 OM 1.000 0.802 *** 0.357 ** 0.078 0.068-0.199-0.209 0.717 *** 0.883 * T-N 1.000 0.384 ** 0.093 0.009-0.164-0.211 0.734 *** 0.922 ** P 2O 5 1.000-0.003-0.217-0.328 * -0.091 0.341 ** 0.797 K 1.000 0.588 *** 0.285 * -0.146-0.041 0.439 Ca 1.000 0.654 *** 0.121-0.266 * 0.179 Mg 1.000 0.143-0.355 ** -0.659 EC 1.000-0.261 * 0.026 Al. 1.000 0.590 *** SMC 1.000 OM: Organic matter, T-N: Total nitrogen, EC: Electric conductivity, SMC: Soil moisture content, Al.: Altitude, *:p< 0.05, **:p< 0.01, ***:p< 0.001 Fig. 5. Correlation between soil moisture content(smc) and altitude in the study area. Key to symbols - : Carex siderosticta subco. of Quercus mongolica co., : Typical subco. of Q. mongolica co., : Rhododendron schlippenbachii subco. of Pinus densiflora co., : Typical subco. and Sanguisorba officinalis subco. of Pinus densiflora co., : Carpinus cordata-acer mono co., : Q. dentata co., : Q. acutissima co., : Q. variabilis co., co.: community, subco.: subcommunity.,,,. (p<0.001) ( 1993, 2005).,,. ( ),.. (1988) Lactuca serriola.., -., (Cain 1950). (1993)..,
2006 6 273 (Choung and Hong 2006). -.,, (Crocker and Major 1955, Olson 1958, 1977).,.,., 6 10 cm (Fig. 4B), J (Austin 1977, Despain 1983, 2003).. (Tüxen 1956, 1997). (Chun et al. 2006)., (Fig. 6). Group,,,,,, Group -. DCA. Group Group. Group ( ) Group. ( ). ( 600m )., - Fig. 6. Possibile developmental stages in the studied forest. Quercus serrata co. left a question as to whether or not potential natural vegetation in the lower-sphere of the cold-temperate deciduous broad-leaved forest. co. : community, subco. : subcommunity. -.,., ( 1983, 2003),. (Barnes et al. 1998, Choung et al. 2004, 2004)., ( 2000). J,..,,,, ( 7.8 14.2, 580.2 775.6 mm) (Chen 1995)..
274 J. Ecol. Field Biol. 29 (3), Pinus contorta Abies lasiocarpa 200 (Clark et al. 2003). 50 100 (Clark et al. 2003). -,,,,,,,,. Kim(1992) - -,.,,.,, -,,.,,, (Fig. 6). ( ),, - (Fig. 1, 6). 적요. DCA,. 2,.,,.,,.,, -, 3. -,. 감사의글. 인용문헌,,. 1983.. 6: 237-242.. 2000.. 450p.,,. 1998.. 21: 283-290.,. 1993.. 16: 439-457.. 1988. Lactuca serriola.. p 43..,,. 1990. Classification Ordination. 33: 173-182.,,,,,. 2004.. 27: 99-106.. 1981. ( ). 54: 25-35.. 1996.... 1688p.,. 2005.. 28: 69-77.,,,. 2003.. 26: 223-236.,,,. 1993.. 16: 239-259.,. 1992.... 467p.,,. 2000.. 23: 407-421. Arsenault A, Bradfield GE. 1995. Structural-compositional variation in three age-classes of temperate rainforests in southern coastal British Columbia. Can J Bot 73:54-64. Austin MP. 1977. Use of ordination and other multivariate descriptive methods to study succession. Vegetatio 35: 165-176. Barnes BV, Zak DR, Denton SR, Apurr SH. 1998. Forest Ecology (4ed). John wiley and Sons, New York. Brulisauer AR, Bradfield GE, Maze J. 1996. Quantifying organizational change after fire in lodgepole pine forest understory. Can J Bot 74: 1773-1782. Brzeziecki B, Kienast F, Wildi O. 1993. A simulated map of the potential natural forest vegetation of Switzerland. J Veg Sci 4: 499-508.
2006 6 275 Cain SA. 1950. Life-forms and phytoclimate. Bot Rev 16:1-32. Chen LZ. 1995. Deciduous broad-leaved forests in North-Central China. in E.O. Box et al.(eds.), Vegetation Science in Forestry. Kluwer Academic Publishers. Dordrecht. pp 255-271. Choung HL, Hong SK. 2006. Distribution patterns, floristic differentiation and succession of Pinus densiflora forest in South Korea: A perspective at nation-wide scale. Phytocoenologia 36(2): 1-17 (DOI: 10.1127/0340-269X/2006/0036-0001). Choung Y, Lee BC, Cho JH, Lee KS, Jang IS, Kim SH, Hong SK, Jung HC, Choung HL. 2004. Forest responses to the large-scale east coast fires in Korea. Ecol Res 19: 43-54. Chun YM, Lee HJ, Lee CS. 2006. Vegetation trajectories of Korean Red Pine (Pinus densiflora Sieb. et Zucc.) forests at Mt. Seorak, Korea. J Plant Biol 49: 141-152. Clark DF, Antos JA, Bradfield GE. 2003. Succession in sub-boreal forests of West-Central British Columbia. J Veg Sci 14: 721-732. Connell JH, Slatyer RO. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111: 1119-1144. Crocker RL, Major J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay. Alaska. J Ecol 43: 427-448. Despain DG. 1983. Nonpyrogenous climax lodgepole pine communities in Yellowstone National Park. Ecology 64: 231-234. Ellenberg H. 1988. Vegetation ecology of Central Europe. University Press, Cambridge. Kim JU, Yim YJ. 1987. Actual vegetation and potential natural vegetation of Seonunsan Area, Southwestern Korea. Korean J Ecol 10: 159-164. Kim JU, Yim YJ. 1988. Phytosociological classification of plant communities in Mt. Naejang, southwestern Korea. Korean J Bot 31: 1-31. Kim JW. 1992. Vegetation of northeast Asia on the syntaxonomy and syngeography of the oak and beech forests. Ph.D. Thesis, Wien University. p 314. Lee EB. 1997. Actual vegetation and potential natural vegetation of Pukhansan National Park, Mid-western Korea. Korean J Ecol 20: 439-450. McCook LJ. 1994. Understanding ecological community succession : Causal models and theories, a review. Vegetatio 110: 115-147. McCune B, Mefford MJ. 1999. PC-ORD, multivariate analysis of ecological data. Version 4. MjM Software Design. Gleneden Beach- Oregon. USA. Olson JS. 1958. Rates of succession and soil changes on southern Lake Michigan sand dunes. Bot Gaz 119: 125-170. Pavel VK, Song JS, Nakamura Y, Verkholat VP. 2006. A phytosociological survey of the deciduous temperate forests of mainland Northeast Asia. Phytocoenologia 36: 77-150. Peet RK. 1992. Community structure and function. In: Glenn-Lewin, D.C., Peet, R.K. and Veblen, T.T. (eds.) Plant succession, theory and prediction, pp. 103-151. Chapman and Hall, New York, NY, US. Pickett STA, Cadenasso ML. 2005. Vegetation dynamics. In: Vegetation Ecology. (van der Maarel, eds). Blackwell Science Ltd, Oxford, pp 172-198. Pickett STA, Kolasa J, Armesto JJ, Collins SL. 1989. The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54: 129-136. Pickett STA, White PS. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, FL, US. Shugart HH. 1984. A theory of forest dynamics: The ecological implications of forest succession models. Springer-Verlag, New York. Smith T, Huston M. 1989. A theory of the spatial and temporal dynamics of plant communities. Vegetatio 83: 46-69. Tüxen R. 1956. Die heutige potentielle naturliche Vegetation als Gegenstand der Vegetationskartierung. Angew. Pflanzensoziologie 13: 5-42. Westhoff V, van der Maarel E. 1978. The Braun-Blanquet approach. In: Whittaker, R.H.(ed.) Classification of plant communities, pp 287-374. Junk, The Hague.. 1997.. NNT.. 244p.. 1977... (2006 5 31 ; 2006 6 16 )