DBPIA-NURIMEDIA

Similar documents
DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

Slide 1

012임수진

Lumbar spine

43(1)-4(p.23-30).fm

Cloning

TOYOBO Reagent 만의독보적인기술 ReverTra Ace M-MLV RTase 의 RNase H domain 에 mutation 시키므로 RNase H activity 를낮추고,mRNA 의 degradation 을막아 cdna 합성효율을높임 KOD Polyme

고품격 cdna 합성을위한 RT Kit M-MLV RTase 의 RNase H domain 에 mutation 시키므로 RNase H activity 를낮추고, mrna 의 degradation 을방지하여 cdna 합성효율을높임 d... qpcr RT Kit 의 cdn

09È«¼®¿µ 5~152s

Crt114( ).hwp

139~144 ¿À°ø¾àħ

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

03이경미(237~248)ok

Selection chart of Bioneer s cdna synthesis products Categories Application Product cdna Synthesis Kits One step RT-PCR Kits One step RT-qPCR Kits RTa


316 Research in Plant Disease Vol. 21 No. 4, (Seo, 2009). Enzyme-Linked Immuno Sorbent Assay(ELISA) Reverse Transcription- Polymerase Chain Reaction(R

DBPIA-NURIMEDIA

슬라이드 1

ITEM 1 PCR Enzyme 20% DNA Polymerase Enzyme Quick Selection Guide for Effective PCR DNA Polymerase General PCR / Colony PCR Long PCR (Max. 23 kb) Hot

2018 ASF Standard Operation Procedure 아프리카돼지열병진단개요 : - African swine fever, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Chapter2.


발간등록번호

DNA/RNA Amplification Overview AccuPower PreMix series 는세계적으로기술력을인정받은특허기술로보다경제적인가격과편리한방법으로실험할수있는제품입니다. Conventional PCR, Real-Time PCR 수행을위한 DNA ampli

Spring SALE 개나리 꽃이 피었습니다! 당신의 얼굴에도 웃음 꽃이 피었습니다! Seakem LE Agarose (Cat. No ) One하면 덤으로 한 개 더! 1+1 기간 : 2011년 3월 2일 ~ 4월 15일 ~ 30 % Sa le 고객지원센터


현대패션의 로맨틱 이미지에 관한 연구

슬라이드 1

디지털포렌식학회 논문양식

09권오설_ok.hwp

03-ÀÌÁ¦Çö


SMARTer 시리즈

01-15(3)-12(최장경).fm

12.077~081(A12_이종국).fm

실험 Set Up Guide 실험주제 Real Time PCR 실험원리 Quantitative Real-Time PCR (qrt-pcr) 은 1992년에도입되어생명공학에응용되기시작하였이기술은잘알려져있는 PCR기법을개량한것이다. PCR은핵산의효소증폭을이용하며, 극히적은양

04_이근원_21~27.hwp

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

Ver.4 (KR) All about RT (cdna Synthesis) 8-11 Munpyeongseo-ro, Daedeok-gu, Daejeon 34302, Republic of Korea Tel: (Korea) (Internatio

[ ] : WT O ( )

untitled

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소


Microsoft Word - Genolution RNAi Manual.doc

01 Buffers & Gel Stain Buffers 3 Gel Stain SilverStar Staining Kit 6

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

1..

(

아태연구(송석원) hwp

<C7D1B9CEC1B7BEEEB9AEC7D03631C1FD28C3D6C1BE292E687770>

2019 TOYOBO BIG SALE 기간 : 2019년 7월 1일 ~ 9월 11일까지 최대 33% SALE qpcr Enzyme PCR Enzyme 20% 2+1 cpcr Enzyme cdna Synthesis 2+1 cdna Synthesis kit High Qua

Can032.hwp

hwp

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

인문사회과학기술융합학회

05052유식안101.hwp

PCR DNA Polymerase 선택가이드 일반적인 PCR 실험 Blend Taq / Blend Taq -Plus- Repairing 일반 DNA polymerase와 proofreading 기능의효소가섞인제품 Taq polymerase 보다 3~4 배낮은 error

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

슬라이드 1


<313120B9DABFB5B1B82E687770>

Ver.3(KR) All about Real-Time PCR 8-11, Munpyeongseoro, Daedeok-gu, Daejeon 34302, Republic of Korea Tel: (Korea) (International) +

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)


DNA Polymerase Enzyme Quick Selection Guide for Effective PCR DNA Polymerase High Quality Polymerase General PCR / Colony PCR High Fidelity PCR (80-fo

뉴스레터6호F?2??訝

DBPIA-NURIMEDIA

10(3)-09.fm

서론 34 2

16(1)-3(국문)(p.40-45).fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con


歯kjmh2004v13n1.PDF

EZ-Cloning kit

<31332EBEC6C6AEB8B6C4C9C6C3C0BB20C8B0BFEBC7D120C6D0C5B0C1F6B5F0C0DAC0CE20BFACB1B82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

ReverTra Ace cdna Synthesis Kit d ReverTra Ace M-MLV RTase의 RNase H domain 부위에유전자조작을시켜, Rnase H activity를낮추어 mrna의 degradation을방지하여 cdna 합성효율을높임 Long

09-감마선(dh)

<31325FB1E8B0E6BCBA2E687770>

182 동북아역사논총 42호 금융정책이 조선에 어떤 영향을 미쳤는지를 살펴보고자 한다. 일제 대외금융 정책의 기본원칙은 각 식민지와 점령지마다 별도의 발권은행을 수립하여 일본 은행권이 아닌 각 지역 통화를 발행케 한 점에 있다. 이들 통화는 일본은행권 과 等 價 로 연

Print

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

항체 포털 서비스 Preparation Peptide 총 4주 소요 / 473,000 ~ 511,000 Free of charge 2~3 days 243,000 ~ 281,000 의뢰서 작성 Peptide epitope prediction 유전자 정보

untitled

Rheu-suppl hwp

DBPIA-NURIMEDIA

step 1-1

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

,.,..,....,, Abstract The importance of integrated design which tries to i

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

미생물분류는형태적특징, 생리 생화학적성질과상태, 화학분류학적성질과상태등을이용하여구분하는것이일반적이지만, 이와같은방법을이용하면많은시간을필요로한다. 또한분류가힘든경우나, 정확하지못한결과를얻는경우도있다. 최근미생물분류에도분자생물학적인방법을이용하여, 미생물이가지고있는 DNA를

Transcription:

Original Article Journal of Apiculture 31(1) : 41~50 (2016) Rapid Detection of Black Queen Cell Virus from Honeybee using Reverse Transcription Real-Time Recombinase Polymerase Amplification (RT/RT RPA) Su Jin Lim, Giang Thi Huong Luong, Sang Hyun Min, Ji Hee Wang and Byoung-Su Yoon* Department of Life Science, College of Natural Science, Kyonggi University, Suwon 16227, Korea (Received 15 April 2016; Revised 25 April 2016; Accepted 26 April 2016) Abstract Black Queen Cell Virus (BQCV) is one of pathogenic virus in honeybee which could be detected using reverse transcription real-time PCR (RT/RT-PCR). In this study, for rapid detection of BQCV, Recombinase Polymerase Amplification (RPA) was applied, and BQCV-specific reverse transcription real-time RPA (RT/RT-RPA) method was newly developed based on BQCV-specific RT/RT PCR. The Real-time RPA (RT-RPA) was performed at 37 C isothermal condition for 40 minutes. During the experiments, specific DNA amplifications were real-timely monitored using fluorescent detector. BQCV-specific DNA amplification could be detected from 3 min 26 sec after RPA reaction with specific DNA templates by RT-RPA, while 41 min 42 sec was required by qrt- PCR with same quantities of initial templates. With generated cdna from BQCV-infected honeybee, specific DNA amplification was recognized at 4 min 18 sec using RT-RPA, however, 66 min 5 sec was needed using Real-time PCR. Moreover, with reverse transcriptase and RPA solution, BQCVspecific DNA amplification could be detected at 8 min 36 sec from total RNA of BQCV-infected honeybee using one-step Reverse Transcription/Real-Time RPA (RT/RT-RPA). Key words: Black queen cell virus, BQCV, Virus detection, Recombinase Polymerase Amplification, RPA, Real-time RPA *Corresponding author. E-mail: bsyoon@kgu.ac.kr 41

42,,,,. Acute Bee Paralysis Virus (ABPV), Chronic Bee Paralysis Virus (CBPV), Sacbrood Virus (SBV), Kashmir Bee Virus (KBV), Deformed Wing Virus (DWV), Black Queen Cell Virus (BQCV), 18 (Tentcheva et al., 2004; Berényi et al., 2006). Black Queen Cell Virus (BQCV), (Chen et al., 2007), family Dicistroviridae,, (Mayo, 2002). BQCV RNA ORF, replicase 5 - ORF capsid protein 3 - ORF (Leat et al., 2000). BQCV (Yoo et al., 2008; Kang et al., 2012). BQCV, Multiplex reverse transcription-pcr (Grabensteiner et al., 2007), One-step real-time PCR (Kukielka et al., 2008) BQCV. PCR PCR (quantitative Real-Time PCR; qrt-pcr) BQCV (Yoo et al., 2008)., qrt-pcr, thermo cycling,,. PCR PCR (Ultra-Rapid PCR; UR- PCR) PCR (Ultra-Fast PCR; UF-PCR), 30 PCR 5 ~8 (Yoo et al., 2011; Giang et al., 2015). Recombinase Polymerase Amplification (RPA), PCR, (Piepenburg et al., 2006),. RPA recombinase, single strand binding protein (SSBP), strand displacing DNA polymerase, specific primer, 37 C, 30. RPA,., RPA, RPA., RPA BQCV,,,. Apis mellifera, 2015. 50mL conical tube, 70 C. BQCV-specific PCR, BQCV. DWV (Deformed Wing Virus)-specific PCR,

43 Table 1. Sequences of specific BQCV-VP3 primers Oligo name Sequence (5 3 ) PCR product (bp) Reference BQCV-VP3-F1 BQCV-VP3-R1 CTGGGCGAACATCTACCTTTCC GCAATGGGTAAGAGAGGCTTCG 131 Giang et al., 2015 DWV., MagNA Lyser green Beads (Roche, Switzerland). RNA Allspin TM (GeneAll, Korea). RNA Biophotometer (Eppendorf, Germany), 1µg RNA AccuPower RT Premix (Bioneer, Korea) cdna 70 C. cdna real-time RPA real-time PCR. pgem-bqcv-vp3 BQCV VP3 (Giang et al., 2015). pgem-3zf(+) vector (Promega, USA) BQCV VP3, DH5α. DNA clone DNA-spin TM Plasmid DNA Purification Kit (intron Biotechnology, Korea) pgem-bqcv-vp3, Biophotometer (Eppendorf, Germany) DNA, DNA 20 C. qrt-pcr SYBR green Exicycler TM Quantitative Thermal Block (Bioneer, Korea). 20µl, HiPi Real-Time PCR 2x Master Mix, 1x SYBR green (Elpisbio, Korea), 10 pmole, pgem-bqcv-vp3 DNA cdna. BQCV VP3. GenBank database (Accession No. KR074231), BQCV-VP3-F1 (forward) BQCV-VP3-R1 (reverse) KR074231 139 bp 269 bp, 131 bp PCR, (Bionics, Korea) (Table 1). RT-RPA Twist Amp Basic kit (TwistDx, UK). RPA reaction mix kit freeze-dried reaction 280mM MgAc, 2.4 pmole (BQCV-VP3-F1/R1), 1x rehydration buffer, 1x SYBR green I, vortex, freeze-dried reaction tube pipetting (Table 2). qrt-pcr 200µl white tube, tube 10 7 molecules 1µl pgem- BQCV-VP3. RPA 280mM MgAc, 37 C, 1 1 cycle, 40 40 cycle Table 2. Compositon of BQCV-RPA Composition Volume (µl) Distillted water 7.2 BQCV-VP3-F1 (10pmole/µl) 2.4 BQCV-VP3-R1 (10pmole/µl) 2.4 Primer free rehydration buffer 29.5 10x SYBR green 5.0 Total 46.5

44 Table 3. Qauntitative Real time PCR instrument set up for RPA 1 37 C 1min 2 scan 3 Go to step 1 Repeat 40 cycle 4 Melting 60-94 C 1 C/1sec 5 store 8 C (Table 3). DNA SYBR green I (Elpisbio, Korea) Exicycler TM Quantitative Thermal Block (Bioneer, Korea) RPA. cdna RT-RPA, RNA Reverse transcription RT-RPA one-step. AccuPower RT Premix (Bioneer, Korea), 1µg RNA, 100 pmoles Oligo dt 70 C 5 pre-denaturation,, RPA-kit freeze-dried reaction (dried pellet) pippet. RPA kit 280mM MgAc, 37 C RPA. one-step reverse transcription RPA cdna DNA, 40 DNA. Real-Time PCR Real-Time RPA DNA pgem-bqcv-vp3, DNA. (Table 1) BQCV-VP3-F1 BQCV-VP3-R1. Fig. 1. Fluorescence curves of specific DNA amplification using real-time RPA. Real-time RPAs were performed with 1 ng of pgem-bqcv-vp3 as template (Positive) or without template (Negative). Fluorescence based on DNA amplification was rapidly increased and passed through the base line on 3.44 cycles, on the time of 3 min 26 sec after beginning of Positive reaction. However, fluorescence from Negative was not reached the base line until 40 cycles (40 min). Real-Time PCR, 94 C 30 Pre-denaturation, denaturaion 94 C, 15, Annealing 62 C, 15 Extension 72 C, 15 Total 35 cycle. Real-Time RPA 37 C 40 cycle (Table 3). Real time RPA Real time PCR BQCV-VP3 melting, agarose gel 131 bp DNA (Fig. 1, Fig. 2, Fig. 3). Real-time RPA 3 26 (3.44 cycles) DNA, 40., template RPA 40 DNA. Final Fluorescent value 40 (40 cycles) 5301, Negative 167 (Fig. 1)., Real-time PCR 16.22 Ct ( 41 42 ) DNA, 26 cycles( 64 17 ) 5514, 35 cycles( 90 ) 4988

45 Fig. 2. Fluorescence curves of specific DNA amplification using real-time PCR. Real-time PCRs were performed with 1 ng of pgem-bqcv-vp3 as template (Positive) or without template (Negative). Fluorescence based on DNA amplification was passed through the base line on 16.12 cycles, on the time of 41 min 42 sec after beginning of Positive reaction. However, fluorescence from Negative was passed through the base line on 30.88 cycles, on the time of 79 min 24 sec.., template Real-time PCR 30.88 Ct ( 79 24 ), DNA, 35 cycles( 90 ) 1521 (Fig. 2). Real time RPA Real time PCR,, DNA 1.5% Agarose gel DNA. Real-time PCR 131bp (Positive), template PCR negative DNA (Fig. 3A). RPA DNA 131 bp DNA., RPA Negative DNA, (Fig. 3B). unspecific single strand DNA 131 bp DNA band, negative DNA. RPA DNA Fig. 3. Agarose gel electrophoresis of amplified DNAs using RPA or PCR. Panel A. PCR products from real-time PCRs in Fig. 2. Panel B. RPA products before purification from real-time RPAs in Fig. 1. Panel C. RPA products after purification. In each panel, Lane 1 is the amplified product with 1 ng of pgem-bqcv-vp3 as template, and lane 2 is Negative reaction without template. The expected size of BQCV-DNA was 131 bp long., unspecific single strand DNA RPA single strand binding protein (SSBP) gel mobility shift (Fig. 3C). Real-time RPA Real-time PCR,, Real-time RPA Real-time PCR DNA.. Real-time PCR Real-time RPA, cdna. BQCV RNA, 1µg RNA Reverse transcriptase, cdna. RPA PCR cdna (Table 1)., cdna Real-time RPA 4.31 cycles( 4 18 ) DNA, 40. 10 6

46 Fig. 4. Amplification of BQCV-VP3 sequences from cdna using real-time RPA. cdna from BQCV-infected honeybee was used for the template of Real-time RPA. As positive or negative control, with 10 6 copies of pgem-bqcv-vp3 or without template, Real-time RPAs were performed, respectively. Ct values and final fluorescence values were estimated for each RPA, 3.73 and 4402 (Positive), 4.31 and 3280 (cdna), 8.67 and 1145 (Negative), respectively. In right, BQCV-specific 131 bp long products were only observed on lane 1 (Positive) and lane 2 (cdna). Fig. 5. Amplification of BQCV-VP3 sequences from cdna using real-time PCR. cdna from BQCV-infected honeybee was used for the template of Real-time PCR. As negative control, Real-time RPA without template were also performed. 24.09 cycles (Ct values) and 5173 final fluorescence values were estimated, only in RPA with cdna. pgem-bqcv-vp3 RPA 3.73 cycles( 3 43 ) DNA. negative RPA 8.67 cycles( 8 40 ) DNA. 3 RPA, 3 Ct value. 4402, 3280, 1145, Ct 3.73, 4.31, 8.67 cycles. Threshold cycles (Ct ), (Regression coefficience; R 2 ) 0.9443. DNA, 1.5% agarose gel, cdna pgem- BQCV-VP3 Real-time RPA 131bp (Fig. 4)., BQCV cdna, RT-RPA, Real-time PCR, BQCV-specific sequence, Ct 24.09 cycles( 66 5 ) DNA. 40 cycles, 5173 Fig. 6. Melting temperature analysis and gel electrophoresis after real-time PCR. (Left) The temperature of mid-point (Tm) was measured at 80.5 C in only PCR with cdna, as same as expected. (Right) In agarose gel electrophoresis, expected 131bp long DNA was only observed in PCR with cdna (lane 1).., negative DNA (Fig. 5). Real-time PCR cdna PCR (Melting temperature analysis) Tm(temperature of mid-point). Tm 80.5 C, DNA pgem-bqcv-vp3 BQCV-VP3-F1/R1 PCR Tm, cdna (Fig. 6). BQCV cdna, Real-time RPA Real-time PCR

47 Fig. 7. Specificity of Real-time RPAs with cdnas generated from BQCV- or DWV-infected honeybee. With BQCV-cDNA using BQCV-specific real-time RPA, BQCV-specific DNA amplification was recognized at 5 min 53 sec (5.89 cycles). With DWV-cDNA using BQCV-specific real-time RPA, unspecific DNA amplification was recognized at 10 min 15 sec (10.25 cycles). Without templates using BQCV-specific realtime RPA, un-specific DNA amplification was also recognized at 16 min 51 sec (16.85 cycles). (Right), BQCVspecfic DNA, 131 bp long, was well observed by agarose electrophoresis (lane 2). Un-specifc DNAs were also recognized by RPAs with DWV-cDNA (lane 1), or without templates (lane 3), respectively. BQCV 131 bp VP3 gene., Real-time RPA 4 18, Real-time PCR, 66 5. 61 47,, RPA. Real-time RPA Real-time PCR, (specificity). BQCV DWV(Deformed Wing Virus) RNA, cdna. BQCV cdna DWV cdna, BQCV VP3 BQCV-VP3-F1/R1 (Table 1). Real-time RPA BQCV cdna 5 53 (5.89 cycles) DNA, DWV cdna 10 15 (10.25 cycles) DNA., RPA 16 51 (16.85 cycles) DNA (Fig. 7). RT-RPA 40, 3 1968, 936, 519, Ct value 5.89, 10.25, 16.85 cycle (initial template). Real-time RPA, 1.5% agarose gel, BQCV cdna 131 bp BQCV DNA, DWV cdna 131 bp BQCV DNA. DNA,., DNA realtime RPA DNA DNA ( ; Ct,, RPA )., BQCV-cDNA BQCV Realtime PCR, PCR 43 51 Ct 17.85 DNA. PCR Ct 30, 35 5492., DWV-cDNA BQCV Real-time PCR 74 22 Ct 29.37 DNA, 1324., BQCV Real-time PCR, 69 12 Ct 27.21 DNA, 2009 (Fig. 8). 3 PCR (specificity)

48 Fig. 9. One-step Reverse Transcription Real-Time RPA (RT/RT RPA) assay. For the detection of BQCV, BQCV-specific one-step RT/RT RPA were performed with total RNA from BQCV-infected honeybee. With total RNA or without template, 8.61 cycles (8 min 36 sec) or 23.56 cycles (23 min 33 sec) were recorded using BQCV-specific RT/RT-RPAs. 131 bp long BQCV-specific DNA was observed only in RT/RT-RPA product with BQCV-total RNA (lane 1; right). Fig. 8. Real-time PCR with cdnas generated from BQCV-, or DWV-infected honeybee. The fluorescent graphs of Realtime PCRs with BQCV-cDNA or DWV-cDNA, or without template. The total time of 35 cycles PCR is 90 minutes. Times to Ct values were measured 43 min 51 sec (17.85 cycles), 69 min 12 sec (27.21 cycles), and 74 min 22 sec (29.37 cycles), respectively. (Bottom) Tm (Temperature of mid-point) 80.5 C in PCR product with BQCV-cDNA is identical as Tm of BQCV-specific PCR product., DNA (Melting temperature analysis)., BQCV-cDNA BQCV Real-time PCR BQCV PCR (Tm=80.5), DWVcDNA BQCV Real-time PCR DNA (Fig. 8). BQCV, DWV cdna, BQCV Realtime RPA BQCV Real-time PCR BQCV-cDNA BQCV DNA, DWV-cDNA BQCV DNA., DNA Real-time RPA 5 53, Real-time PCR 43 51,. Real-time RPA DNA DNA. RNA Real-time RPA BQCV RPA (BQCV-specific One-step Reverse transcription Real-Time RPA; RT/RT-RPA). BQCV RNA, 1µg RNA, 200 unit M-MLV reverse transcriptase RPA solution one-step 37 C 40. BQCV-specific one-step RT/RT RPA 8 36 (8.61 cycles) BQCV DNA, negative 23 33 (23.56 cycles) DNA. 1181, 353

49 RPA 37 C, BQCVspecific RPA., Heat block, PCR. 40 ( ), RPA 1.5% agarose gel. 37 C, 131bp BQCV DNA, 37 C heat block PCR BQCV DNA band. RPA RPA (Fig. 10). Fig. 10. BQCV-specific RPAs using different incubation devices. Lane 1 to 4 were RPA products using 37 C heat block, 37 C water bath, at room temperature (25 C) and Real- Time PCR machine, respectively. Without template, same RPA reactions were performed in 37 C water bath (lane 5). 131bp long BQCV-specific DNA were observed only in lane 1, 2, 4, respectively. (Fig. 9). One-step RT/RT RPA RNA BQCV RPA. RPA 37 C., RNA,, RNA, BQCV RPA. (BQCV), (RT/RT PCR). BQCV Recombinase polymerase amplification (RPA) BQCV RPA BQCV DNA. Real-time RPA 37 C 40 DNA. Real-time RPA BQCV DNA, RPA 3 26, Real-time PCR 41 42. BQCV cdna Real-time RPA 4 18, Real-time PCR 66 5., BQCV RNA RPA RPA (onestep RT/RT RPA) 8 36 BQCV DNA.

50 (115067-02), (115058-02, 115102-03), (312027-03) 2016. Allen, M., & Ball, B. 1996. The incidence and world distribution of honey bee viruses. Bee world, 77(3): 141-162. Berényi, O., Bakönyi, T., Derakhshifar, I., Köglberger, H., Nowotny, N. 2006. Occurrence of six honeybee viruses in diseased Austrian apiaries. Appl. Environ. Microbiol. 72(4): 2414-2420. Chen, Y.P. and Siede, R. 2007. Honey bee viruses. Adv. Virus Res. 70: 33-80. Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A.,... & Martinson, V. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318(5848): 283-287. Ellis, J.D., & Munn, P.A. 2005. The worldwide health status of honey bees. Bee world, 86(4): 88-101. Euler, M., Wang, Y., Nentwich, O., Piepenburg, O., Hufert, F.T., & Weidmann, M. 2012. Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. Journal of Clinical Virology, 54(4): 308-312. Euler, M., Wang, Y., Otto, P., Tomaso, H., Escudero, R., Anda, P.,... & Weidmann, M. 2012. Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. Journal of clinical microbiology, 50(7): 2234-2238. Grabensteiner, E., Bakonyi, T., Ritter, W., Pechhacker, H., & Nowotny, N. 2007. Development of a multiplex RT-PCR for the simultaneous detection of three viruses of the honeybee (Apis mellifera L.): Acute bee paralysis virus, Black queen cell virus and Sacbrood virus. Journal of invertebrate pathology, 94(3): 222-225. Jung, C.E. 2008. Economic value of honeybee pollination on major fruit and vegetable crops in Korea. Korean Journal of Apiculture. 23(2): 147-152. Kang, S.W., Yoo, M.S., Noh, J.H., Park, H.S., Jeon, D.M., Park, S.C.,... & Lee, M.K. 2012. Occurrence and Prevalence of Honeybee Disease in Apis mellifera and Apis cerana in Korea. Journal of Apiculture, 27(3): 187-195. Kukielka, D., Esperón, F., Higes, M., & Sánchez-Vizcaíno, J.M. 2008. A sensitive one-step real-time RT-PCR method for detection of deformed wing virus and black queen cell virus in honeybee Apis mellifera. Journal of virological methods, 147(2): 275-281. Leat, N., Ball, B., Govan, V., & Davison, S. 2000. Analysis of the complete genome sequence of black queen-cell virus, a picorna-like virus of honey bees. Journal of General Virology, 81(8): 2111-2119. Luong, G.T.H., Lee, J.S., Yong, S.J., & Yoon, B.S. 2015. Development of Ultra-Rapid Reverse Transcription Real- Time PCR for Detection against Black Queen Cell Virus in Honeybee. Journal of Apiculture, 30(3): 171-179. Mayo, M.A. 2002. Virus taxonomy-houston 2002. Archives of virology, 147(5): 1071-1076. Piepenburg, O., Williams, C.H., Stemple, D.L., & Armes, N.A. 2006. DNA detection using recombination proteins. PLoS Biol, 4(7): e204. Tentcheva, D., Gauthier, L., Zappulla, N., Dainat, B., Cousserans, F., Colin, M. E., & Bergoin, M. 2004. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Applied and environmental microbiology, 70(12): 7185-7191. Yoo, M.S., Kim, I.W., Kang, M.H., Han, S.H., & Yoon, B.S. 2008. Development of Real-Time PCR Method for Black Queen Cell Virus. Korean Journal of Apiculture. 23(1): 37-42. Yoo, M.S., Han, S.H., & Yoon, B.S. 2011. Development of Ultra-Rapid Real-Time PCR Method for Detection of Black Queen Cell Virus. Journal of Apiculture, 26(3): 203-208. Zhang, S., Ravelonandro, M., Russell, P., McOwen, N., Briard, P., Bohannon, S., & Vrient, A. 2014. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP using reverse transcription-recombinase polymerase amplification. Journal of virological methods, 207: 114-120.