<312E20C3D6C1BEC7A5C1F6BCADB9AEB5EE2E687770>

Similar documents
에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35

歯표지_최종H_.PDF

<2D3828C8AE29B9DAC3B5B1D42E687770>

歯목차.PDF

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

164

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

<C3D6C1BE5FBFACB1B8BAB8B0EDBCAD D30335FC1B6B5BFC3B65FBFECB8AEB0E6C1A6C0C7BFAAB5BFBCBA5F6B E687770>

공휴일 전력 수요에 관한 산업별 분석

에너지경제연구 제12권 제2호


<C7D1B1B9B0E6C1A6BFACB1B8C7D0C8B828C0CCC1BEBFF85FC0CCBBF3B5B75FBDC5B1E2B9E9292E687770>

<C7A5C1F620BEE7BDC4>

歯목차.PDF

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 1~18 가격비대칭성검정모형민감도분석 1

에너지경제연구 제13권 제1호

에너지경제연구 Korean Energy Economic Review Volume 17, Number 1, March 2018 : pp. 37~65 가정부문전기수요의결정요인분석 : 동태적패널 FD GMM 기법을중심으로 37

에너지경제연구 제13권 제1호

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

노동경제논집 38권 3호 (전체).hwp

에너지경제연구 제13권 제2호

ÀÌÁÖÈñ.hwp


, ( ) * 1) *** *** (KCGS) 2003, 2004 (CGI),. (+),.,,,.,. (endogeneity) (reverse causality),.,,,. I ( ) *. ** ***

2

1차1~6장12.9

15인플레이션01-목차1~9

에너지경제연구 제12권 제2호

......(N)

歯표지.PDF

국제무역론-02장

<C6EDC1FD2DBAB8B0EDBCAD BCF6C1A4292D DBABBB9AE2E687770>

제 출 문 국방부 장관 귀하 본 보고서를 국방부 군인연금과에서 당연구원에 의뢰한 군인연금기금 체 계적 관리방안 연구용역의 최종보고서로 제출합니다 (주)한국채권연구원 대표이사 오 규 철

<3036C0CCBCB1BFEC2E687770>

<BED6C7C3BCD2BDBA5F4B5350BBFDBBEABCBA31C0E5312D32302E70312E504446>

201501_경제전망보고서_f.hwp



歯4차학술대회원고(황수경이상호).PDF

Microsoft Word - HMC_economy_note_ _하반기

歯4차학술대회원고(장지연).PDF

한국은행 인터넷 홈페이지를 통해 신속하고 편리하게 한국은행 정보를 이용하실 수 있습니다. 인터넷 홈페이지 주소 :

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1

:49 AM 페이지302 해외 및 기타 여건에 맞춘 주민중심의 도시재생 활성화 방안 마련 1. 조사개요 을 위해 일본의 주거지 정비정책 및 정비방안을 조 1.1 출장목적 사 분석함으로써 성남시에 적용 가능한 방안을 도출 하고 실질적인 사업 추진이

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

<C5EBC0CFBFACB1B8BFF85F4B494E5520C5EBC0CFC7C3B7AFBDBA2832C8A3295FB3BBC1F628C0FCC3BC295F37C2F75F E687770>

자연채무에대한재검토 1. 서론 2. 선행연구 9 Journal of Digital Convergence 214 May; 12(5): 89-99

KDI정책포럼제221호 ( ) ( ) 내용문의 : 이재준 ( ) 구독문의 : 발간자료담당자 ( ) 본정책포럼의내용은 KDI 홈페이지를 통해서도보실수있습니다. 우리나라경

(2007)KICI 12-2.hwp

Microsoft Word be5c80390f90.docx

요 약 대한민국은 1948년 정부수립 이후 60년 만에 세계 13위의 경제대국으로 비약적인 성 장을 이루었다. 정부수립 2년 만에 북한의 전격 남침으로 전 국토가 초토화되었고, 휴 전 이후에도 안보에 대한 위협은 계속되었다. 그러나 대한민국 국민은 불리한 여건에 좌절하

34, 40 34, Blume, Easley and O Hara(1994)..,. (random walk),. Easley and O Hara(1987). Karpoff(1987) (1987) (+). (private information) (public informa

대구전시컨벤션센터 전시행사의 지역경제 파급효과 분석

의정연구_36호_0828.hwp

<C8A3C5DABBEABEF720B0E6B1E2B5BFC7E220BFB9C3F820B8F0B5A8BFA120B4EBC7D120BFACB1B85FC3D6C1BE28C7D1C3A2BFB1292E687770>

Vol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

, (, 2000) (public management),,, ( ), (Parasuraman, 1988), Lacobucci(1996) (consumer evaluation),,, ( ) ( E x p e c t a t i o n ) (, 2001) Parasurama

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

<C3D6C1BEBAB8B0EDBCAD2EC1A4C8F1B3B22EB8AEC3F7C1A6B5B5C8B0BCBAC8ADB9E6BEC E312E35292E687770>

DBPIA-NURIMEDIA

44-6대지.08김정희-5

<4B C0CEBBE7C0CCC6AE D323720C0CEBCE22E687770>

- 2 -

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

Industrial Location 산업입지 2014 Winter Vol.56 Contents Ⅰ 논단 : 지역투자 촉진을 통한 지역경제 활성화 방안 지역투자 촉진을 위한 인센티브 개선방안 박재곤 지방투자촉진보조금 추이분석과 제도 개선과제 김광국

에너지경제연구 제13권 제2호

44-4대지.07이영희532~

<31B1C72DC7D1B1B9C0BAC7E028C5EBC7D5C6EDC1FD292E687770>

1-2-2하태수.hwp

methods.hwp

Microsoft Word - NEW08_prof. Ma

<283529B9E8BFB5B8F12E687770>

1-3-2 윤기웅, 김진영, 공동성.hwp

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 147~181 정책 국내도시가구전력소비효율의결정요인분석

IDP www idp or kr IDP 정책연구 한국경제의구조적문제와개혁방향 민주정책연구원 The Institute for Democracy and Policies

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

Microsoft PowerPoint - F_ 경제전망_편.pptx [읽기 전용]

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

에너지경제연구 제13권 제2호

untitled

ePapyrus PDF Document

칼라기사(1407)

< B3E2B0E6B3B2B0E6C1A6C0FCB8C128C0DAB9AEC8B8C0C7292E687770>

조재욱D)-63-88

歯글로벌디플레이션가능성과영향( ).p

권두논단(2월).hwp

abstract.dvi

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 95~118 학술 탄소은행제의가정용전력수요절감효과 분석 1) 2) 3) * ** *** 95

untitled

유선종 문희명 정희남 - 베이비붐세대 소유 부동산의 강제매각 결정요인 분석.hwp

바른 정책

<303320B9DABFF8BECF2E687770>

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 57~83 발전용유연탄가격과여타상품가격의 동조화현상에대한실증분석 57

에너지경제연구 Korean Energy Economic Review Volume 12, Number 1, March 2013 : pp. 125~158 알뜰주유소전환으로인한자영주유소의 휘발유가격인하효과분석 125

歯25차.PPT

워크넷 스마트폰과 만나다 아이폰 안드로이드앱 모바일 웹 서비스 아이폰 앱스토어, 안드로이드마켓에서 워크넷 인터넷 브라우져 실행후 m.work.go.kr 지역,직종,기업형태,상장여부,복리후생,임금별 채용정보 한번의 설정으로 자동검색과 보관까지 제공하는 맞춤채용정보 내이력

현 안 분 석 2 Catsouphes & Smyer, 2006). 우리나라도 숙련된 인 력부족에 대한 우려가 심화되고 있으며, 일자리의 미 스매치 수준이 해외 주요국보다 심각하다는 점도 지 지부진한 유연근무제의 확산을 위한 진정성 있는 노 력이 필요하다는 점을 보여준다

<C3D6C1BEBFCFBCBA2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D31C8A3292E687770>

Transcription:

()

.... 10.29,....,..

.,.,...,.

,..,,,, 150,..,..,..

., VAR VAR, VAR, VAR.,,.....,..,...,,,.

,.,,.,..,,..,

,..,.,.,..,.,,.,,., VAR VAR,..,

.,,,..,,,,. 19911/420032/4, 50, 153.,,.,,,, 5 ARIMA, VAR,.,,, 4, 194. 8..

,,, 62.,,., 3.,,,,, 8, 2.,, GNP 3., (OLS)..,,. VARVAR VAR, VAR. VAR3, -GDP- --5VAR( 2) (RMSPE). VAR (R)-GDP(Y)-(HR)-(LP)-(HP) 5, VAR. VAR g()=2.0 f(i, j)=0.2

VAR., VAR. 5VAR,.,,,,,.,,.,,, 19862002 17, (pooling).,,.,.,.. /,, /..

2003 4/4,. 100.96(2003.6=100 ), 103.13. VAR 103.49, 100.84. VAR 102.2, 102.0.,.....,.,....

......,.

,.,, VAR,,.,, KDI.,,. (, 2002),. VAR,. BSI()..

VAR,...,.,.

,..,..,.. ( ),

,.,, (time horizon).. ().. (2000),. (1992),.. (2002), VAR,., GDP,., (2002),.

., (2000),,, ARIMA VAR. (1997)VAR..,.,... VAR,..

, BSI,. (, ARIMA VAR), BSI.. 1).,..,.. 1)..

,. VAR, BSI.,,,.,., VAR VAR,. VAR VAR.,.. (),.

...,., ().,.. 2) (pooling).,. 3) BSI, 2) VAR,. 3) 200248,. 2002.

.,.

.,..,. BSI,..,

. 4),. 5),..,.,.,,, 4) 2000. 5).

. (), 45,.,.. t(3/4)t+1(4/4)t+1 t,.,. t(3/4 ) t 8 (8)t 9 (9), t 7 (7)t 8 (8)t.,., ARIMA, VAR (reduced form). ARIMA, VAR

.,,,. (KRIHS-Sq) VAR (KRIHS-Vq)., VARVARVAR(Bayesian VAR),, VAR(Structure VAR).., VAR. VAR., VAR. 6). 6),,. 90,.

.,.,,,,.,. <3-1>.,...

.. t-1t, t+1. 7). t-1t, t., t+i(i=-4,-3,,3,4), t j (j=1,2,,12).,. t 1, t 2 t 3 (level variables), 7), (2/4) (7 ) (6 ) 1.

,. KRIHS-Sq (dummy).. 8), 1.,. t+1(2003 4/4) t 9 9.5. t 8 (2003.8) t 9 (2003.9) t 9 (2003.9) t 9 t+1 8), ().

<3-2>. 1,,, t(). 초단기예측모형 당분기주택가격등의잠정치추계 단기구조모형 단기 ( 다음분기 ) 부동산시장전망 부속모형 지역시장예측 단기 VAR 모형 외생적충격파급효과 단기전망치도출 전문가협의 중기예측모형 중기부동산시장전망 중기전망치도출

2 t+1(), VAR. VARt+1...,. 20034/4. 20039, 9. - 1: 9, 3/4, 9.5-2 : 3/4 VAR 4/4, 9.5 9.5 (), - 4/410.29

. 19911/420032/4, 50, 153. 1991, 90. (, 2002)1991. 9).,,,. 3 GNP 9) (2000) 1991 2/4 3/4, (1999) 19941991.

, 12. CD91 CD. (M2), 1996. NM2, M3, (M3)., M3... 10) 1999,...,.,,, GDP. 10).

,,. ARIMA, VAR,. ARIMA, 50. 11),., MA AR. d, AR order p, MA orderq, MA AR.. 11),.

ARIMA. 1991120033147. <4-2> < 4-3>.

, 1.. ARMA. ARMA SIC, R 2, RMSPEARMA t, < 4-4>. ARMA RMSPE,.. 20034~7,, < 1> < 116>.

, ARIMA VAR(Vector Autoregressive model). VAR, 13).. VAR,.. VAR,,,, 56. VAR,, GDP, (3). GDP,. 12) (ARMA). VAROLS. 13)..

,. 1991 1 2003 9, 1. CENSUS X-12. 1.. - -, 1. 토지 주택 전세 -- 1,.

경기동행지수 토지주택전세 이자율 VAR(- -). AIC SC 2. VAR <4-5>.. 3 < 4-6>., VAR 1(--). VAR 1(--) VAR 2(---) VAR 3(----). VAR 2-2.

주 : ( ) 은

주 : ( ) 은

주 : ( ) 은

주 : ( ) 은

주 : ( ) 은

주 : ( ) 은

,,.,,, 4, 194. 8. 14) < 4-7>,.. 14) 2002. 2002 4, 23 7. 18,.

(level variable) (spurious regression).,. 15) 1,., (bias).,.,.,,. 12,.. -., 15),.

. (feed back). 16) -,,.,.,,, 62.,,. (permanent income hypothesis) (life cycle income hypothesis).,., 1990. 17) 16).. 17),.,.

(substitute effect) (income effect), (time preference).,.,.,,, (flexible accelerator model)() 18). (gap),..,.,,.. (GDP),,,,.

.,. = (+), (+), (+,-) = (+), (-), (+), (-), (+) = (+), (-), (+), (+) = (+), (-), (+), (+) = (+), (+), (+) = (+), (+), (+) = (+), (+), 3. - (). 19),,,.. 19) Tobin, Markowitz..

(M3),. ().,..,,.,,. 20) 3 CD. CD. (M3) = (+), (-), (+), (+), (+) = (+), (+), (+), (+) CD = (+), (+) 20), CD.

,,,,, 8, 2.,,.,,. - -. - (),,. 21) -,. -,. -,.,. 21) - D. DiPasquale and W. Wheaton, Urban Economics and Real Estate Markets, 1996.

.,,,., -.,.. - -.,, CD, 22). (). 23) (). -. 22) CD CD(91). 60% 3. 23) t-1t. t-n(n=1,2,3,...)t, t-1.

,,.,.,. -,.., 80%..,..,,.,,,.

= (+), (-), (-), (+) = (+), (-), (-), (+) = (+), (-), (-), (+) = + + = (+), (+), CD(-), (+) = (+), (+), CD(-), (+) = (+), (+), CD(-), (+) = + + = (+), (+), (-), (+) = (+), (+),, GNP3..,,. 24),., (), q,, 24),. (Cecchetti, S. C., H. Genberg, J. Lipsky and S. Wadhwani, Asset Prices and Central Bank Policy, Geneva Reports on the World Economy No. 2, Centre for Economic Policy Reh. London, 2000)

.,.,,. GDP(mark-up),,,.,,,.. = (+), (+), (+), (+), (+) = (+), (+), (+), (+) GDP= (+), (+), (+), (+), (+), (OLS).,

().. (slope dummy).. t (adj. R 2 ),, F, DW(Durbin-Watson). 25),.. 25) (residuals) () (independently and identically distributed).

CP = 1.0205 INCOME + 0.0869 HPRICE - 0.3409 RC/CPI (10.3986) (1.2148) (-1.7836) - 8.8901 CPdum - 2.7444 t dum + 1.9311 (-3.3617) (-1.6930) (1.5364) R 2 : 0.8620 adj. R 2 : 0.8460 D.W.: 1.1902 IME = 0.9194 mov2m3/gdef*sdum(-1) - 0.5665 mov2rc/cpi(-2) (2.5211) (-1.0996) + 0.1513mov2SPI(-1) - 0.2948 LP(-2) + 0.5415 IMElag (4.5092) (-1.7133) (8.5812) - 17.6795 IME dum - 8.9292 t dum - 2.7521 (-5.0775) (-2.1590) (-0.4386) R 2 : 0.9300 adj. R 2 : 0.9174 D.W.: 1.6802 ICH = 0.1595 HPRICE + 0.0990 mov2hfin/gdef(-3) - 0.0191 UNSEL(-2) (0.8146) (0.7061) (-0.5602) + 0.7308 ICH lag + 0.5704 (6.2372) (0.1671) R 2 : 0.7523 adj. R 2 : 0.7240 D.W.: 1.4671

ICNH = 0.5221 mov2nagdp(-1) - 1.5438 RC/CPI(-3) + 0.0730 ICNHlag (1.6824) (-3.2636) (2.6498) + 0.6944 SPI(-3) + 22.5281 ICNH dum + 7.1141 (10.4736) (5.0353) (1.7152) R 2 : 0.8672 adj. R 2 : 0.8510 D.W.: 1.8584 IRI = 0.7870 GC/GDEF + 0.6615 M3/GDEF(-1) + 0.3873 IRI lag (1.9980) (1.3081) (3.2630) + 30.8444 IRI dum - 8.8176 (4.7105) (-1.5628) R 2 : 0.6433 adj. R 2 : 0.6109 D.W.: 1.8119 M3/GDEF = 0.2115 NAGDP - 0.2978 RC/CPI - 0.0227 SPI(-2) (2.1764) (-2.0142) (-2.5527) - 0.1585 HPRICE(-1) + 0.5391 M3/GDEF lag + 1.7169 M3/GDEF dum (-2.9759) (4.1559) (1.8762) + 5.4591 (3.7669) R 2 : 0.7236 adj. R 2 : 0.6832 D.W.: 1.5389

RC/CPI = 0.0559 IFR + 0.2511 TDR/CPI + 0.4723 CR/CPI lag (4.1581) (3.7717) (8.1495) + 0.3382 RC/CPI - 1.7426 KIDEA dum (4.5850) (-1.6813) - 2.0150 RC/CPI dum + 0.9521 (-3.0770) (2.3873) R 2 : 0.9139 adj. R 2 : 0.9016 D.W.: 1.3312 CD CD/CPI = 0.6206 CR/CPI + 0.5193 mov2 RC/CPI - 1.5623 CD/CPI dum - 0.5760 (14.1845) (8.5760) (-2.5283) (-2.0261) R 2 : 0.9715 adj. R 2 : 0.9696 D.W.: 1.4792 ARENT = 0.9280 INCOME - 0.1145 mov2ich(-1) - 1.5923 RC/CPI(-1) (5.4634) (-2.5024) (-5.9679) + 0.5341 ARENT lag + 4.7247 RENT dum + 9.3323 (6.6903) (2.2064) (4.8632) R 2 : 0.8817 adj. R 2 : 0.8676 D.W.: 1.0863

RRENT = 0.7105 INCOME - 0.1009 mov2 ICH(-1) - 0.9864 RC/CPI(-1) (7.9532) (-3.7694) (-6.5808) + 0.6293 RRENT lag + 4.9348 RENT dum + 4.7027 (12.0271) (3.8970) (4.3311) R 2 : 0.9369 adj. R 2 : 0.9294 D.W.: 1.4433 DRENT = 0.4471 INCOME - 0.0505 mov2 ICH(-1) - 0.6768 RC/CPI(-1) (7.7177) (-2.4206) (-6.0730) + 0.7355 DRENT lag + 3.4102 RENT dum + 2.7848 (15.2095) (3.7230) (3.4875) R 2 : 0.9433 adj. R 2 : 0.9366 D.W.: 1.7964 AHPRICE = 0.1146 mov2 ARENT(0) + 0.0500 HLOAN/CPI - 0.7291 CD/CPI(-2) (1.7548) (2.2456) (-3.3340) + 0.5282 AHPRICE lag + 4.0616 (7.8900) (2.0343) R 2 : 0.8989 adj. R 2 : 0.8895 D.W.: 1.2399 RHPRICE = 0.0650 mov2 RRENT(0) + 0.0321 HLOAN/CPI - 0.3676 CD/CPI(-2) (1.5717) (2.5004) (-2.9864) + 0.6166 RHPRICE lag + 1.1573 (10.9359) (1.0438) R 2 : 0.9154 adj. R 2 : 0.9075 D.W.: 1.0914

DHPRICE = 0.1012 mov2 DRENT(0) + 0.0132 HLOAN/CPI - 0.2932 CD/CPI(-2) (2.3008) (1.4659) (-3.4571) + 0.6431 DHPRICE lag + 0.9566 (12.0696) (1.2513) R 2 : 0.9266 adj. R 2 : 0.9198 D.W.: 0.9913 LP = 0.3011 NAGDP + 0.0205 LT - 0.3608 RC/CPI(-2) + 0.8881 LP lag (4.7786) (1.1707) (-2.5727) (17.0527) + 5.2793 LP dum + 0.2836 (2.5095) (0.2423) R 2 : 0.8875 adj. R 2 : 0.8730 D.W.: 1.6279 LT = 0.3193 ICH + 1.7101 HPRICE + 41.5933 LT dum1 + 18.9721 LT dum2 (1.7639) (5.5118) (7.3870) (2.7704) + 2.7005 (1.3401) R 2 : 0.7321 adj. R 2 : 0.7060 D.W.: 1.2309

CPI = 0.0373 INCOME(-3)+ 0.0945 mov2 M3/GDEF*sdum(-1) + 0.0754 MPI (1.4027) (3.0579) (7.3057) + 0.0136 HPRICE(-2) + 0.4984 CPI lag + 0.1595 (0.7676) (6.7621) (0.4026) R 2 : 0.8692 adj. R 2 : 0.8529 D.W.: 1.5415 PPI = 0.0878 WAGE + 0.2032 MPI + 0.0806 RC/CPI(-1) (2.3678) (12.0821) (1.0955) + 0.5385 PPI lag - 1.0481 (10.9682) (-2.1707) R 2 : 0.9353 adj. R 2 : 0.9294 D.W.: 1.1571 GDP GDEF = 0.2522 CPI + 0.2000 WAGE(-2) + 0.0801 MPI (1.1320) (4.2967) (2.9929) + 0.2473 M3/GDEF*sdum + 0.3135 GDEF lag - 4.3480 (2.7332) (2.3905) (-3.7995) R 2 : 0.8645 adj. R 2 : 0.8484 D.W.: 1.0663

UNSEL = -0.3403 AR(1) + 0.6066 AR(2) - 0.1994 MA(1) - 0.7825 MA(2) (-2.5640) (4.7955) (-1.7578) (-6.8854) R 2 : 0.5528 adj. R 2 : 0.5166 D.W.: 1.9872 GC= -0.6542 AR(1) + 0.54386 MA(1) - 0.6957 MA(2) - 0.8063 MA(3) (-4.8636) (5.9599) (-9.0375) (-10.1781) R 2 : 0.6459 adj. R 2 : 0.6105 D.W.: 2.3314 II= 1.2244 AR(1) - 0.4328 AR(2) - 0.7083 MA(1) + 5.0977 (5.6702) (-2.6927) (-3.4871) (2.2026) R 2 : 0.5019 adj. R 2 : 0.4663 D.W.: 1.9785 TDR= 1.2800 AR(1) - 0.6196 AR(2) - 0.7083 MA(1) - 0.4168 MA(1) (8.8648) (-4.8055) (-3.4871) (-7.4100) - 0.1162 MA(2) + 0.8419 MA(3) + 4.1538 (-1.8426) (13.5044) (6.4294) R 2 : 0.7142 adj. R 2 : 0.6785 D.W.: 1.8400

CR= 1.0448 AR(1) - 0.6342 AR(2) + 0.2912 AR(3) - 0.9865 MA(1)- 0.2273 (6.7605) (-3.1469) (1.8824) (-26.3942) (-3.3951) R 2 : 0.3168 adj. R 2 : 0.2467 D.W.: 2.0036 WAGE= 1.2958 AR(1) - 0.4308 AR(2) - 0.4055 MA(1) - 0.4168 MA(1) (8.7288) (-2.8192) (-5.1453) (-7.4100) + 0.1476 MA(2) + 0.1375 MA(3) - 0.8478 MA(4) + 4.5754 (2.0906) (2.0678) (-6.4967) (7.7313) R 2 : 0.8120 adj. R 2 : 0.7831 D.W.: 1.9491 MPI= 1.0444 AR(1) - 0.2183 AR(2) - 0.2201 MA(1) - 0.7619 MA(2) + 1.9058 (6.0733) (-1.2919) (-1.5297) (-5.3768) (0.5015) R 2 : 0.5756 adj. R 2 : 0.5342 D.W.: 2.1041

(RMSPE(%)), <4-10>,. RMSPE(%)...,. y t, ^y t, h.

19911/4 2002 2/4, 20023/4, <2>. VARVAR(2001,, ),. VAR VAR, VAR. 26) VAR(Bayesian VAR) (Bayesian prior),. VAR (Structural VAR),. 26) VAR (),.

VAR,, GDP, (3 ),. (sonal factor) X-12-ARIMA,. 1., <4-11><4-14>.( )

토 지 주택전세...,.

건설투자 명목 GDP 토 지 회사채 주식가격 < 4-12>< 4-14>.,..

건설투자 명목 GDP 주 택 회사채 주식가격...,. GDP.

건설투자 명목 GDP 전 세 회사채 주식가격 VAR., GDP,,,, 6 VAR (Akaike Information Criteria, AIC) (Schwartz Bayesian Criteria, SC) 27). 6 VAR.. (Johansen's Cointegrntion Test), (Vector Error-Correction Model, VEC ). 27), n 2 PVAR, P, T.

(), GDP,, VAR. VAR X-12-ARIMA. <4-15>, GDP,,, 5 VAR, SC 2. VAR < 4-16>. 5VAR2 14. VEC. 28) 28) VEC < 6>.

, GDP,, 4VAR. (19974/4~1998 3/4). -GDP-- (VAR) -GDP-- ( VAR). 29) 3 -GDP- (VAR-1), 3 -GDP- ( VAR -1). 29), VAR.

, VAR 3. -GDP- -- 5 VAR ( 2), - GDP-- 4 VAR( 3) -GDP-3VAR(3). -GDP-- 4 VAR(3)-GDP-3VAR(3). 3 VAR. 1987 1/4~2000 4/420011/4~20031/4 9, 2001~2002 1987 1/4~2001 4/4 2002 1/4~2003 1/4 5. <4-21>. 1(VAR) (RMSPE), 2., 1.

,, 2001 1/4~2003 1/4 9 2002 1/4~20031/45<3>. 30) VAR. VAR,. VAR 31). 30) DRI, Chase, Wharton, Blue Chip Forecasts. Litterman(1986), Zha(1998) 31) (unconditional forecast). Waggoner and

(, Baysian prior) VAR0, 0. (Minnesota prior). VAR (the deterministic variable).. 0., 1 random walk. 3. VAR. 32) Zha(1990) 32), VAR(scale)., VAR. (overall tightness). 0.1 0.2.

(2) (R)-GDP(Y)- (HR)-(LP)-(HP) 5VAR, VAR.. VAR (prior). Minnesota prior VAR. 0.15, g()0.5, 1.0, 2.0, f(i, j) 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 11. 33VAR VAR. VAR5, 33) 1987 1/42000 4/4 2001 1/ 420031/4 91, 2, 3, 4 3 RMSPE...,,. 33) 5VAR2VAR 20,. 1.

<4-22>33 VAR12g()=2.0 f(i, j)=0.1 0.2, 34g()=0.5 f(i, j)=1.0.

< 4-25> VAR VAR. 1 (HR) 4.5% 2.4%, (LP) 1.2% 0.9%.

VAR g()=2.0 f(i, j)=0.2 ( 19871/420031/4)2003 < 4-26>. 20031/4..

VAR.,., VAR,.,,.. VAR2,,. VAR < 4-2 7><4-28>.... 20041/4.. VAR.

VAR, <4-29> <4-30>.. VAR20041/4108.5, 6.3%VAR 105.8...

, VAR. 34) VAR.. (impulse response analysis) (variance decomposition).. VAR. (1). (1) L, (). y t n 1 e t n 1. e t, var(e t )= n n.. G(L)y t = e t (1), (2) 34) VAR,.

. (2)B(L)L VAR, var(u t )=. y t = B(L)y t + u t (2) 35), Blanchard and Watson(1986), Bernanke(1986), Sims(1986). Blanchard and Watson VAR. Blanchard and Watson(1986), Bernanke(1986), Sims(1986). (1)G(L)L 0 () G 0 G 0 G 0 (L) (3). G(L) = G 0 + G 0 (L) (3) (1)(2). B(L) = -G -1 0 G 0 (L) (4) e t =G 0 u t e t u t (5). = G -1 0 G 0-1 (5) () G 0 35) () ( )() (Sims, 1980). (recursive)wold-causal chain.

(Maximum Likelihood Estimator). (5). (5)n (n-1) n (n+1)/2 n (n+1)/2. G 0 1 G 0 n (n-1)/2. VAR G 0 VAR G 0 (5)- G 0 e t. (R)- GDP(Y)-(HR)-(LP)-(HP) 5 VAR,. 36). VAR,. 1987 1/42003 1/4, VAR 2. GDP -GDP- 36) VAR. G 0VAR, G 0VAR.

3 37),,, 6.,. (R) - GDP(Y) - (HR) - (LP) - (HP), G 0 (lower triangular matrix). VARGDP (+). 3. G 0 05 VAR10 0. G 0 3 R Y. 37) ()GDP.

120(? )(over-identified).?20 3, 6. 38) 167. VARGDP(+). 39) 3. VAR, (R)- GDP(Y)-(HR)-(HP)-(LP). VAR (4), <4-29> (41%) (25%) (24%), (56%) (17%) (15%), (38%) (195) (16%). 38) 6?3(4) a34 a53 0. 39) (+)GDP, 6.

..,,.,,.,..,,,,. log() = 1 log() +2 log(1grdp) +3log() t-2 +4log() + + + log() = 1 log()+2 log(1grdp)+3 log() t-2 +4 log() + + + log() = 1 log() +2 log(1grdp) +3 log() + +

19862002, 15() 255.,,. ().,, 1GRDP. ()(1998),., 1998. 2001 (Slope dummy). <4-32><4-34>., -(Durbin-Watson Statistic).

,..

, 1990, 2003...,. 2000 15. /,. /, 40) < 4-35> < 4-36>. /. 40) /2, 1, 200.. 0(+), (-).

...

,. 2003920034/4,. 20039, 3/4. 20032/43/4 4/4 100.96 (2003.6=100 ), 103.13. 4/4. VAR3/44/4 103.49, 100.84. <5-1>

. 41) VAR<5-2> 102.2, 102.0. 42),., 9.5 10.29. 41),.

9.5, 20034/4. 9.59,, 9 10. 9.5. 9, 1.1%, 0.9%. 9, 0.8%0.3%. 9.5, 10.. 10.29.10.29 12. 2004. 2%P <5-1>. <5-1>2%P. 1 41.8%., 2 6 2%..,

. 0.0-0.5-1.0-1.5-2.0-2.5-3.0-3.5-4.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 아파트매매가격 아파트전세가격. 1997 12% CD 2003 3%. 30%...

,..,..,,.,...,..,.. (BSI).

.,,,.

1999... 1998.4... 2000.... 2002... 2002... 1998. IMF.. 2002... 2002-02. 2000... 1994.. :. 1994... 2002.... 33. 1. 1998.1. 2001.VAR.. 2000...

2000... 2002. " "... 2000. " ".. 1997. " ". 45(1).. 1995. :,.. 2000. :. 1992.,... 1986... 1989.. 1988.. Bernanke, B. S. 1986. Alternative Explanations of the Money-Income Correlation. Carnegie-Rochester Conference Series on Public Policy 25. pp. 49-99. Blanchare, O. J. and M. W. Watson. 1986. Are All Business Cycles Alike?. R. J. Gordon(ed.), American Business Cycle. Chicago: University of Chicago Press. Capoza, D.R., G.M. Schwann and K.E. Case. 1989. "The Asset Approach to Pricing Urban Land: Empirical Evidence". AREUEA Journal. pp161-176. Case, B. and Quigley, J. M. Feb. 1991. "The dynamics of real estate price". Review of Economics and statistics No. 1.

Crone, Theodore M. and Michael P. McLaughlin. 1999. A Bayesian VAR for Forecasting Model for the Philadelphia Metropolitan Area. FRB of Philadelphia Working Papers 99-7. DiPasquale, D. and W. C. Wheaton. 1996. Urban Economics and Real Estate Markets. Prentice Hall. Englewood Cliffs, NJ. Dombush, Rudiger and Stanley Fischer. 1990. Macroeconomics Fifth edition. Edelstein, R. H. and J. M. Paul. 1997. Are Japanese Land Price Based on Expectation. AREUEA-ASRES Joint Conference Maui. Englund, P. and Y.M. Ioannides. 1997. "House Price Dynamics: An International Empirical Perspective". Journal of Housing Economics Vol 6. Figlewski, S. and P. Wachtel. 1981. "The Formation of Inflationary Expectations" Review of Economics and Statistics 63. Harvey. Andrew C. 1990. The Econometric Analysis of Time Series. Second edition. Philip Allan. Harvey, Jack. 1996. Urban Land Economics Fourth edition. Macmillan. Ihlanfeldt, Keith and Thomas P. Boehm. 1987. "Government Intervention in the Housing Market: An Empirical Test of the Externalities Rationale". Journal of Urban Economics 22. pp276-290. Litterman, Robert B. 1986. Forecasting with Bayesian Vector Autoregressions - Five Years of Experience. Journal of Business and Economic Statistics 4, pp25-38. Malpezzi, Stephan and Duncan Maclennan. Sept. 1994. "The Long Run Price Elasticity of Supply of New Residential Construction in the United States and the United Kingdom". mimeo. The University of Wisconsin. McDonald, John F. 1996. Fundamentals of Urban Economics. Prentice Hall. Muth, Richard F. and Allen C. Goodman. 1989. The Economics of Housing Markets. Harwoord Academic Publishers.

Pearce, D. K. 1979. "Comparing Survey and Rational Measures of Expected Inflation". Journal of Money, Credit and Banking 11. pp447-456. Meen, G.P. 2001. Modelling Spatial Housing Markets - Theory, Analysis and Policy. Kluwer Academic Publishers. Sims, C. A. 1980. Macroeconomics and Reality. Econometrica 48. pp1-48. Sims, C. A. 1986. Are forecasting models usable for policy analysis?. Federal Reserve Bank of Minneapolis Quarterly Review Winter. pp2-16. Todd, Richard M. 1984. Improving Economic Forecasting with Bayesian Vector Autoregression. Quarterly Review fall. FRB of Minneapolis. pp18-29. Waggoner, Daniel and Tao A. Zha. 1998. Conditional Forecasts in Dynamic Multivariate Models. FRB of Atlanta Working Paper. pp98-22. Zha, Tao A. 1998. A Dynamic Multivariate Models for Use in Formulating Policy. FRB of Atlanta Economic Review 83 First Quarter. pp16-29.

130 125 120 115 110 105 100 95 90 2001 1/4 2001 2/4 2001 3/4 2001 4/4 2002 1/4 2002 2/4 2002 3/4 2002 4/4 2003 1/4 실적치 95.0000 97.1000 101.8000 103.5000 111.4000 113.7000 119.6000 120.5000 121.9000 대안1의전망치 96.3600 95.3539 99.4996 105.8192 106.4283 115.5130 118.6532 123.9533 125.5445 대안2의전망치 97.1146 97.8831 100.4624 104.9360 106.7133 116.4318 120.1507 121.9542 129.7227 대안3의전망치 96.3555 96.7667 99.4498 104.2745 106.1876 117.7370 119.3667 122.7159 129.4011 165 160 155 150 145 140 135 130 125 120 115 2001 1/4 2001 2/4 2001 3/4 2001 4/4 2002 1/4 2002 2/4 2002 3/4 2002 4/4 2003 1/4 실적치 119.3000 123.1000 131.0000 132.4000 142.1000 144.4000 148.2000 145.8000 147.9000 대안1의전망치 120.2484 122.9460 130.4757 131.6898 135.8154 154.0010 145.7891 153.0586 157.7191 대안2의전망치 121.3806 122.6958 129.0113 134.4324 140.9194 151.9751 152.9730 156.5627 163.1301 대안3의전망치 121.3806 122.6958 129.0113 134.4324 140.9194 151.9751 152.9730 156.5627 163.1301

104 102 100 98 96 94 92 90 2001 1/4 2001 2/4 2001 3/4 2001 4/4 2002 1/4 2002 2/4 2002 3/4 2002 4/4 2003 1/4 실적치 90.5600 90.6900 91.0100 91.2700 91.7600 93.3800 94.5800 97.7200 100.0000 대안1의전망치 91.2577 90.9707 92.3380 94.0845 92.6006 94.7910 96.4480 98.6614 100.4814 대안2의전망치 92.7542 90.2532 93.2750 94.1600 93.7150 97.6445 97.5684 99.6170 102.2616 대안3의전망치 93.4647 91.3191 93.5357 93.4459 92.9332 93.8101 96.7992 96.6515 100.9765

VAR 2 14. 4VECAIC SC5VEC ( 4).