()
.... 10.29,....,..
.,.,...,.
,..,,,, 150,..,..,..
., VAR VAR, VAR, VAR.,,.....,..,...,,,.
,.,,.,..,,..,
,..,.,.,..,.,,.,,., VAR VAR,..,
.,,,..,,,,. 19911/420032/4, 50, 153.,,.,,,, 5 ARIMA, VAR,.,,, 4, 194. 8..
,,, 62.,,., 3.,,,,, 8, 2.,, GNP 3., (OLS)..,,. VARVAR VAR, VAR. VAR3, -GDP- --5VAR( 2) (RMSPE). VAR (R)-GDP(Y)-(HR)-(LP)-(HP) 5, VAR. VAR g()=2.0 f(i, j)=0.2
VAR., VAR. 5VAR,.,,,,,.,,.,,, 19862002 17, (pooling).,,.,.,.. /,, /..
2003 4/4,. 100.96(2003.6=100 ), 103.13. VAR 103.49, 100.84. VAR 102.2, 102.0.,.....,.,....
......,.
,.,, VAR,,.,, KDI.,,. (, 2002),. VAR,. BSI()..
VAR,...,.,.
,..,..,.. ( ),
,.,, (time horizon).. ().. (2000),. (1992),.. (2002), VAR,., GDP,., (2002),.
., (2000),,, ARIMA VAR. (1997)VAR..,.,... VAR,..
, BSI,. (, ARIMA VAR), BSI.. 1).,..,.. 1)..
,. VAR, BSI.,,,.,., VAR VAR,. VAR VAR.,.. (),.
...,., ().,.. 2) (pooling).,. 3) BSI, 2) VAR,. 3) 200248,. 2002.
.,.
.,..,. BSI,..,
. 4),. 5),..,.,.,,, 4) 2000. 5).
. (), 45,.,.. t(3/4)t+1(4/4)t+1 t,.,. t(3/4 ) t 8 (8)t 9 (9), t 7 (7)t 8 (8)t.,., ARIMA, VAR (reduced form). ARIMA, VAR
.,,,. (KRIHS-Sq) VAR (KRIHS-Vq)., VARVARVAR(Bayesian VAR),, VAR(Structure VAR).., VAR. VAR., VAR. 6). 6),,. 90,.
.,.,,,,.,. <3-1>.,...
.. t-1t, t+1. 7). t-1t, t., t+i(i=-4,-3,,3,4), t j (j=1,2,,12).,. t 1, t 2 t 3 (level variables), 7), (2/4) (7 ) (6 ) 1.
,. KRIHS-Sq (dummy).. 8), 1.,. t+1(2003 4/4) t 9 9.5. t 8 (2003.8) t 9 (2003.9) t 9 (2003.9) t 9 t+1 8), ().
<3-2>. 1,,, t(). 초단기예측모형 당분기주택가격등의잠정치추계 단기구조모형 단기 ( 다음분기 ) 부동산시장전망 부속모형 지역시장예측 단기 VAR 모형 외생적충격파급효과 단기전망치도출 전문가협의 중기예측모형 중기부동산시장전망 중기전망치도출
2 t+1(), VAR. VARt+1...,. 20034/4. 20039, 9. - 1: 9, 3/4, 9.5-2 : 3/4 VAR 4/4, 9.5 9.5 (), - 4/410.29
. 19911/420032/4, 50, 153. 1991, 90. (, 2002)1991. 9).,,,. 3 GNP 9) (2000) 1991 2/4 3/4, (1999) 19941991.
, 12. CD91 CD. (M2), 1996. NM2, M3, (M3)., M3... 10) 1999,...,.,,, GDP. 10).
,,. ARIMA, VAR,. ARIMA, 50. 11),., MA AR. d, AR order p, MA orderq, MA AR.. 11),.
ARIMA. 1991120033147. <4-2> < 4-3>.
, 1.. ARMA. ARMA SIC, R 2, RMSPEARMA t, < 4-4>. ARMA RMSPE,.. 20034~7,, < 1> < 116>.
, ARIMA VAR(Vector Autoregressive model). VAR, 13).. VAR,.. VAR,,,, 56. VAR,, GDP, (3). GDP,. 12) (ARMA). VAROLS. 13)..
,. 1991 1 2003 9, 1. CENSUS X-12. 1.. - -, 1. 토지 주택 전세 -- 1,.
경기동행지수 토지주택전세 이자율 VAR(- -). AIC SC 2. VAR <4-5>.. 3 < 4-6>., VAR 1(--). VAR 1(--) VAR 2(---) VAR 3(----). VAR 2-2.
주 : ( ) 은
주 : ( ) 은
주 : ( ) 은
주 : ( ) 은
주 : ( ) 은
주 : ( ) 은
,,.,,, 4, 194. 8. 14) < 4-7>,.. 14) 2002. 2002 4, 23 7. 18,.
(level variable) (spurious regression).,. 15) 1,., (bias).,.,.,,. 12,.. -., 15),.
. (feed back). 16) -,,.,.,,, 62.,,. (permanent income hypothesis) (life cycle income hypothesis).,., 1990. 17) 16).. 17),.,.
(substitute effect) (income effect), (time preference).,.,.,,, (flexible accelerator model)() 18). (gap),..,.,,.. (GDP),,,,.
.,. = (+), (+), (+,-) = (+), (-), (+), (-), (+) = (+), (-), (+), (+) = (+), (-), (+), (+) = (+), (+), (+) = (+), (+), (+) = (+), (+), 3. - (). 19),,,.. 19) Tobin, Markowitz..
(M3),. ().,..,,.,,. 20) 3 CD. CD. (M3) = (+), (-), (+), (+), (+) = (+), (+), (+), (+) CD = (+), (+) 20), CD.
,,,,, 8, 2.,,.,,. - -. - (),,. 21) -,. -,. -,.,. 21) - D. DiPasquale and W. Wheaton, Urban Economics and Real Estate Markets, 1996.
.,,,., -.,.. - -.,, CD, 22). (). 23) (). -. 22) CD CD(91). 60% 3. 23) t-1t. t-n(n=1,2,3,...)t, t-1.
,,.,.,. -,.., 80%..,..,,.,,,.
= (+), (-), (-), (+) = (+), (-), (-), (+) = (+), (-), (-), (+) = + + = (+), (+), CD(-), (+) = (+), (+), CD(-), (+) = (+), (+), CD(-), (+) = + + = (+), (+), (-), (+) = (+), (+),, GNP3..,,. 24),., (), q,, 24),. (Cecchetti, S. C., H. Genberg, J. Lipsky and S. Wadhwani, Asset Prices and Central Bank Policy, Geneva Reports on the World Economy No. 2, Centre for Economic Policy Reh. London, 2000)
.,.,,. GDP(mark-up),,,.,,,.. = (+), (+), (+), (+), (+) = (+), (+), (+), (+) GDP= (+), (+), (+), (+), (+), (OLS).,
().. (slope dummy).. t (adj. R 2 ),, F, DW(Durbin-Watson). 25),.. 25) (residuals) () (independently and identically distributed).
CP = 1.0205 INCOME + 0.0869 HPRICE - 0.3409 RC/CPI (10.3986) (1.2148) (-1.7836) - 8.8901 CPdum - 2.7444 t dum + 1.9311 (-3.3617) (-1.6930) (1.5364) R 2 : 0.8620 adj. R 2 : 0.8460 D.W.: 1.1902 IME = 0.9194 mov2m3/gdef*sdum(-1) - 0.5665 mov2rc/cpi(-2) (2.5211) (-1.0996) + 0.1513mov2SPI(-1) - 0.2948 LP(-2) + 0.5415 IMElag (4.5092) (-1.7133) (8.5812) - 17.6795 IME dum - 8.9292 t dum - 2.7521 (-5.0775) (-2.1590) (-0.4386) R 2 : 0.9300 adj. R 2 : 0.9174 D.W.: 1.6802 ICH = 0.1595 HPRICE + 0.0990 mov2hfin/gdef(-3) - 0.0191 UNSEL(-2) (0.8146) (0.7061) (-0.5602) + 0.7308 ICH lag + 0.5704 (6.2372) (0.1671) R 2 : 0.7523 adj. R 2 : 0.7240 D.W.: 1.4671
ICNH = 0.5221 mov2nagdp(-1) - 1.5438 RC/CPI(-3) + 0.0730 ICNHlag (1.6824) (-3.2636) (2.6498) + 0.6944 SPI(-3) + 22.5281 ICNH dum + 7.1141 (10.4736) (5.0353) (1.7152) R 2 : 0.8672 adj. R 2 : 0.8510 D.W.: 1.8584 IRI = 0.7870 GC/GDEF + 0.6615 M3/GDEF(-1) + 0.3873 IRI lag (1.9980) (1.3081) (3.2630) + 30.8444 IRI dum - 8.8176 (4.7105) (-1.5628) R 2 : 0.6433 adj. R 2 : 0.6109 D.W.: 1.8119 M3/GDEF = 0.2115 NAGDP - 0.2978 RC/CPI - 0.0227 SPI(-2) (2.1764) (-2.0142) (-2.5527) - 0.1585 HPRICE(-1) + 0.5391 M3/GDEF lag + 1.7169 M3/GDEF dum (-2.9759) (4.1559) (1.8762) + 5.4591 (3.7669) R 2 : 0.7236 adj. R 2 : 0.6832 D.W.: 1.5389
RC/CPI = 0.0559 IFR + 0.2511 TDR/CPI + 0.4723 CR/CPI lag (4.1581) (3.7717) (8.1495) + 0.3382 RC/CPI - 1.7426 KIDEA dum (4.5850) (-1.6813) - 2.0150 RC/CPI dum + 0.9521 (-3.0770) (2.3873) R 2 : 0.9139 adj. R 2 : 0.9016 D.W.: 1.3312 CD CD/CPI = 0.6206 CR/CPI + 0.5193 mov2 RC/CPI - 1.5623 CD/CPI dum - 0.5760 (14.1845) (8.5760) (-2.5283) (-2.0261) R 2 : 0.9715 adj. R 2 : 0.9696 D.W.: 1.4792 ARENT = 0.9280 INCOME - 0.1145 mov2ich(-1) - 1.5923 RC/CPI(-1) (5.4634) (-2.5024) (-5.9679) + 0.5341 ARENT lag + 4.7247 RENT dum + 9.3323 (6.6903) (2.2064) (4.8632) R 2 : 0.8817 adj. R 2 : 0.8676 D.W.: 1.0863
RRENT = 0.7105 INCOME - 0.1009 mov2 ICH(-1) - 0.9864 RC/CPI(-1) (7.9532) (-3.7694) (-6.5808) + 0.6293 RRENT lag + 4.9348 RENT dum + 4.7027 (12.0271) (3.8970) (4.3311) R 2 : 0.9369 adj. R 2 : 0.9294 D.W.: 1.4433 DRENT = 0.4471 INCOME - 0.0505 mov2 ICH(-1) - 0.6768 RC/CPI(-1) (7.7177) (-2.4206) (-6.0730) + 0.7355 DRENT lag + 3.4102 RENT dum + 2.7848 (15.2095) (3.7230) (3.4875) R 2 : 0.9433 adj. R 2 : 0.9366 D.W.: 1.7964 AHPRICE = 0.1146 mov2 ARENT(0) + 0.0500 HLOAN/CPI - 0.7291 CD/CPI(-2) (1.7548) (2.2456) (-3.3340) + 0.5282 AHPRICE lag + 4.0616 (7.8900) (2.0343) R 2 : 0.8989 adj. R 2 : 0.8895 D.W.: 1.2399 RHPRICE = 0.0650 mov2 RRENT(0) + 0.0321 HLOAN/CPI - 0.3676 CD/CPI(-2) (1.5717) (2.5004) (-2.9864) + 0.6166 RHPRICE lag + 1.1573 (10.9359) (1.0438) R 2 : 0.9154 adj. R 2 : 0.9075 D.W.: 1.0914
DHPRICE = 0.1012 mov2 DRENT(0) + 0.0132 HLOAN/CPI - 0.2932 CD/CPI(-2) (2.3008) (1.4659) (-3.4571) + 0.6431 DHPRICE lag + 0.9566 (12.0696) (1.2513) R 2 : 0.9266 adj. R 2 : 0.9198 D.W.: 0.9913 LP = 0.3011 NAGDP + 0.0205 LT - 0.3608 RC/CPI(-2) + 0.8881 LP lag (4.7786) (1.1707) (-2.5727) (17.0527) + 5.2793 LP dum + 0.2836 (2.5095) (0.2423) R 2 : 0.8875 adj. R 2 : 0.8730 D.W.: 1.6279 LT = 0.3193 ICH + 1.7101 HPRICE + 41.5933 LT dum1 + 18.9721 LT dum2 (1.7639) (5.5118) (7.3870) (2.7704) + 2.7005 (1.3401) R 2 : 0.7321 adj. R 2 : 0.7060 D.W.: 1.2309
CPI = 0.0373 INCOME(-3)+ 0.0945 mov2 M3/GDEF*sdum(-1) + 0.0754 MPI (1.4027) (3.0579) (7.3057) + 0.0136 HPRICE(-2) + 0.4984 CPI lag + 0.1595 (0.7676) (6.7621) (0.4026) R 2 : 0.8692 adj. R 2 : 0.8529 D.W.: 1.5415 PPI = 0.0878 WAGE + 0.2032 MPI + 0.0806 RC/CPI(-1) (2.3678) (12.0821) (1.0955) + 0.5385 PPI lag - 1.0481 (10.9682) (-2.1707) R 2 : 0.9353 adj. R 2 : 0.9294 D.W.: 1.1571 GDP GDEF = 0.2522 CPI + 0.2000 WAGE(-2) + 0.0801 MPI (1.1320) (4.2967) (2.9929) + 0.2473 M3/GDEF*sdum + 0.3135 GDEF lag - 4.3480 (2.7332) (2.3905) (-3.7995) R 2 : 0.8645 adj. R 2 : 0.8484 D.W.: 1.0663
UNSEL = -0.3403 AR(1) + 0.6066 AR(2) - 0.1994 MA(1) - 0.7825 MA(2) (-2.5640) (4.7955) (-1.7578) (-6.8854) R 2 : 0.5528 adj. R 2 : 0.5166 D.W.: 1.9872 GC= -0.6542 AR(1) + 0.54386 MA(1) - 0.6957 MA(2) - 0.8063 MA(3) (-4.8636) (5.9599) (-9.0375) (-10.1781) R 2 : 0.6459 adj. R 2 : 0.6105 D.W.: 2.3314 II= 1.2244 AR(1) - 0.4328 AR(2) - 0.7083 MA(1) + 5.0977 (5.6702) (-2.6927) (-3.4871) (2.2026) R 2 : 0.5019 adj. R 2 : 0.4663 D.W.: 1.9785 TDR= 1.2800 AR(1) - 0.6196 AR(2) - 0.7083 MA(1) - 0.4168 MA(1) (8.8648) (-4.8055) (-3.4871) (-7.4100) - 0.1162 MA(2) + 0.8419 MA(3) + 4.1538 (-1.8426) (13.5044) (6.4294) R 2 : 0.7142 adj. R 2 : 0.6785 D.W.: 1.8400
CR= 1.0448 AR(1) - 0.6342 AR(2) + 0.2912 AR(3) - 0.9865 MA(1)- 0.2273 (6.7605) (-3.1469) (1.8824) (-26.3942) (-3.3951) R 2 : 0.3168 adj. R 2 : 0.2467 D.W.: 2.0036 WAGE= 1.2958 AR(1) - 0.4308 AR(2) - 0.4055 MA(1) - 0.4168 MA(1) (8.7288) (-2.8192) (-5.1453) (-7.4100) + 0.1476 MA(2) + 0.1375 MA(3) - 0.8478 MA(4) + 4.5754 (2.0906) (2.0678) (-6.4967) (7.7313) R 2 : 0.8120 adj. R 2 : 0.7831 D.W.: 1.9491 MPI= 1.0444 AR(1) - 0.2183 AR(2) - 0.2201 MA(1) - 0.7619 MA(2) + 1.9058 (6.0733) (-1.2919) (-1.5297) (-5.3768) (0.5015) R 2 : 0.5756 adj. R 2 : 0.5342 D.W.: 2.1041
(RMSPE(%)), <4-10>,. RMSPE(%)...,. y t, ^y t, h.
19911/4 2002 2/4, 20023/4, <2>. VARVAR(2001,, ),. VAR VAR, VAR. 26) VAR(Bayesian VAR) (Bayesian prior),. VAR (Structural VAR),. 26) VAR (),.
VAR,, GDP, (3 ),. (sonal factor) X-12-ARIMA,. 1., <4-11><4-14>.( )
토 지 주택전세...,.
건설투자 명목 GDP 토 지 회사채 주식가격 < 4-12>< 4-14>.,..
건설투자 명목 GDP 주 택 회사채 주식가격...,. GDP.
건설투자 명목 GDP 전 세 회사채 주식가격 VAR., GDP,,,, 6 VAR (Akaike Information Criteria, AIC) (Schwartz Bayesian Criteria, SC) 27). 6 VAR.. (Johansen's Cointegrntion Test), (Vector Error-Correction Model, VEC ). 27), n 2 PVAR, P, T.
(), GDP,, VAR. VAR X-12-ARIMA. <4-15>, GDP,,, 5 VAR, SC 2. VAR < 4-16>. 5VAR2 14. VEC. 28) 28) VEC < 6>.
, GDP,, 4VAR. (19974/4~1998 3/4). -GDP-- (VAR) -GDP-- ( VAR). 29) 3 -GDP- (VAR-1), 3 -GDP- ( VAR -1). 29), VAR.
, VAR 3. -GDP- -- 5 VAR ( 2), - GDP-- 4 VAR( 3) -GDP-3VAR(3). -GDP-- 4 VAR(3)-GDP-3VAR(3). 3 VAR. 1987 1/4~2000 4/420011/4~20031/4 9, 2001~2002 1987 1/4~2001 4/4 2002 1/4~2003 1/4 5. <4-21>. 1(VAR) (RMSPE), 2., 1.
,, 2001 1/4~2003 1/4 9 2002 1/4~20031/45<3>. 30) VAR. VAR,. VAR 31). 30) DRI, Chase, Wharton, Blue Chip Forecasts. Litterman(1986), Zha(1998) 31) (unconditional forecast). Waggoner and
(, Baysian prior) VAR0, 0. (Minnesota prior). VAR (the deterministic variable).. 0., 1 random walk. 3. VAR. 32) Zha(1990) 32), VAR(scale)., VAR. (overall tightness). 0.1 0.2.
(2) (R)-GDP(Y)- (HR)-(LP)-(HP) 5VAR, VAR.. VAR (prior). Minnesota prior VAR. 0.15, g()0.5, 1.0, 2.0, f(i, j) 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 11. 33VAR VAR. VAR5, 33) 1987 1/42000 4/4 2001 1/ 420031/4 91, 2, 3, 4 3 RMSPE...,,. 33) 5VAR2VAR 20,. 1.
<4-22>33 VAR12g()=2.0 f(i, j)=0.1 0.2, 34g()=0.5 f(i, j)=1.0.
< 4-25> VAR VAR. 1 (HR) 4.5% 2.4%, (LP) 1.2% 0.9%.
VAR g()=2.0 f(i, j)=0.2 ( 19871/420031/4)2003 < 4-26>. 20031/4..
VAR.,., VAR,.,,.. VAR2,,. VAR < 4-2 7><4-28>.... 20041/4.. VAR.
VAR, <4-29> <4-30>.. VAR20041/4108.5, 6.3%VAR 105.8...
, VAR. 34) VAR.. (impulse response analysis) (variance decomposition).. VAR. (1). (1) L, (). y t n 1 e t n 1. e t, var(e t )= n n.. G(L)y t = e t (1), (2) 34) VAR,.
. (2)B(L)L VAR, var(u t )=. y t = B(L)y t + u t (2) 35), Blanchard and Watson(1986), Bernanke(1986), Sims(1986). Blanchard and Watson VAR. Blanchard and Watson(1986), Bernanke(1986), Sims(1986). (1)G(L)L 0 () G 0 G 0 G 0 (L) (3). G(L) = G 0 + G 0 (L) (3) (1)(2). B(L) = -G -1 0 G 0 (L) (4) e t =G 0 u t e t u t (5). = G -1 0 G 0-1 (5) () G 0 35) () ( )() (Sims, 1980). (recursive)wold-causal chain.
(Maximum Likelihood Estimator). (5). (5)n (n-1) n (n+1)/2 n (n+1)/2. G 0 1 G 0 n (n-1)/2. VAR G 0 VAR G 0 (5)- G 0 e t. (R)- GDP(Y)-(HR)-(LP)-(HP) 5 VAR,. 36). VAR,. 1987 1/42003 1/4, VAR 2. GDP -GDP- 36) VAR. G 0VAR, G 0VAR.
3 37),,, 6.,. (R) - GDP(Y) - (HR) - (LP) - (HP), G 0 (lower triangular matrix). VARGDP (+). 3. G 0 05 VAR10 0. G 0 3 R Y. 37) ()GDP.
120(? )(over-identified).?20 3, 6. 38) 167. VARGDP(+). 39) 3. VAR, (R)- GDP(Y)-(HR)-(HP)-(LP). VAR (4), <4-29> (41%) (25%) (24%), (56%) (17%) (15%), (38%) (195) (16%). 38) 6?3(4) a34 a53 0. 39) (+)GDP, 6.
..,,.,,.,..,,,,. log() = 1 log() +2 log(1grdp) +3log() t-2 +4log() + + + log() = 1 log()+2 log(1grdp)+3 log() t-2 +4 log() + + + log() = 1 log() +2 log(1grdp) +3 log() + +
19862002, 15() 255.,,. ().,, 1GRDP. ()(1998),., 1998. 2001 (Slope dummy). <4-32><4-34>., -(Durbin-Watson Statistic).
,..
, 1990, 2003...,. 2000 15. /,. /, 40) < 4-35> < 4-36>. /. 40) /2, 1, 200.. 0(+), (-).
...
,. 2003920034/4,. 20039, 3/4. 20032/43/4 4/4 100.96 (2003.6=100 ), 103.13. 4/4. VAR3/44/4 103.49, 100.84. <5-1>
. 41) VAR<5-2> 102.2, 102.0. 42),., 9.5 10.29. 41),.
9.5, 20034/4. 9.59,, 9 10. 9.5. 9, 1.1%, 0.9%. 9, 0.8%0.3%. 9.5, 10.. 10.29.10.29 12. 2004. 2%P <5-1>. <5-1>2%P. 1 41.8%., 2 6 2%..,
. 0.0-0.5-1.0-1.5-2.0-2.5-3.0-3.5-4.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 아파트매매가격 아파트전세가격. 1997 12% CD 2003 3%. 30%...
,..,..,,.,...,..,.. (BSI).
.,,,.
1999... 1998.4... 2000.... 2002... 2002... 1998. IMF.. 2002... 2002-02. 2000... 1994.. :. 1994... 2002.... 33. 1. 1998.1. 2001.VAR.. 2000...
2000... 2002. " "... 2000. " ".. 1997. " ". 45(1).. 1995. :,.. 2000. :. 1992.,... 1986... 1989.. 1988.. Bernanke, B. S. 1986. Alternative Explanations of the Money-Income Correlation. Carnegie-Rochester Conference Series on Public Policy 25. pp. 49-99. Blanchare, O. J. and M. W. Watson. 1986. Are All Business Cycles Alike?. R. J. Gordon(ed.), American Business Cycle. Chicago: University of Chicago Press. Capoza, D.R., G.M. Schwann and K.E. Case. 1989. "The Asset Approach to Pricing Urban Land: Empirical Evidence". AREUEA Journal. pp161-176. Case, B. and Quigley, J. M. Feb. 1991. "The dynamics of real estate price". Review of Economics and statistics No. 1.
Crone, Theodore M. and Michael P. McLaughlin. 1999. A Bayesian VAR for Forecasting Model for the Philadelphia Metropolitan Area. FRB of Philadelphia Working Papers 99-7. DiPasquale, D. and W. C. Wheaton. 1996. Urban Economics and Real Estate Markets. Prentice Hall. Englewood Cliffs, NJ. Dombush, Rudiger and Stanley Fischer. 1990. Macroeconomics Fifth edition. Edelstein, R. H. and J. M. Paul. 1997. Are Japanese Land Price Based on Expectation. AREUEA-ASRES Joint Conference Maui. Englund, P. and Y.M. Ioannides. 1997. "House Price Dynamics: An International Empirical Perspective". Journal of Housing Economics Vol 6. Figlewski, S. and P. Wachtel. 1981. "The Formation of Inflationary Expectations" Review of Economics and Statistics 63. Harvey. Andrew C. 1990. The Econometric Analysis of Time Series. Second edition. Philip Allan. Harvey, Jack. 1996. Urban Land Economics Fourth edition. Macmillan. Ihlanfeldt, Keith and Thomas P. Boehm. 1987. "Government Intervention in the Housing Market: An Empirical Test of the Externalities Rationale". Journal of Urban Economics 22. pp276-290. Litterman, Robert B. 1986. Forecasting with Bayesian Vector Autoregressions - Five Years of Experience. Journal of Business and Economic Statistics 4, pp25-38. Malpezzi, Stephan and Duncan Maclennan. Sept. 1994. "The Long Run Price Elasticity of Supply of New Residential Construction in the United States and the United Kingdom". mimeo. The University of Wisconsin. McDonald, John F. 1996. Fundamentals of Urban Economics. Prentice Hall. Muth, Richard F. and Allen C. Goodman. 1989. The Economics of Housing Markets. Harwoord Academic Publishers.
Pearce, D. K. 1979. "Comparing Survey and Rational Measures of Expected Inflation". Journal of Money, Credit and Banking 11. pp447-456. Meen, G.P. 2001. Modelling Spatial Housing Markets - Theory, Analysis and Policy. Kluwer Academic Publishers. Sims, C. A. 1980. Macroeconomics and Reality. Econometrica 48. pp1-48. Sims, C. A. 1986. Are forecasting models usable for policy analysis?. Federal Reserve Bank of Minneapolis Quarterly Review Winter. pp2-16. Todd, Richard M. 1984. Improving Economic Forecasting with Bayesian Vector Autoregression. Quarterly Review fall. FRB of Minneapolis. pp18-29. Waggoner, Daniel and Tao A. Zha. 1998. Conditional Forecasts in Dynamic Multivariate Models. FRB of Atlanta Working Paper. pp98-22. Zha, Tao A. 1998. A Dynamic Multivariate Models for Use in Formulating Policy. FRB of Atlanta Economic Review 83 First Quarter. pp16-29.
130 125 120 115 110 105 100 95 90 2001 1/4 2001 2/4 2001 3/4 2001 4/4 2002 1/4 2002 2/4 2002 3/4 2002 4/4 2003 1/4 실적치 95.0000 97.1000 101.8000 103.5000 111.4000 113.7000 119.6000 120.5000 121.9000 대안1의전망치 96.3600 95.3539 99.4996 105.8192 106.4283 115.5130 118.6532 123.9533 125.5445 대안2의전망치 97.1146 97.8831 100.4624 104.9360 106.7133 116.4318 120.1507 121.9542 129.7227 대안3의전망치 96.3555 96.7667 99.4498 104.2745 106.1876 117.7370 119.3667 122.7159 129.4011 165 160 155 150 145 140 135 130 125 120 115 2001 1/4 2001 2/4 2001 3/4 2001 4/4 2002 1/4 2002 2/4 2002 3/4 2002 4/4 2003 1/4 실적치 119.3000 123.1000 131.0000 132.4000 142.1000 144.4000 148.2000 145.8000 147.9000 대안1의전망치 120.2484 122.9460 130.4757 131.6898 135.8154 154.0010 145.7891 153.0586 157.7191 대안2의전망치 121.3806 122.6958 129.0113 134.4324 140.9194 151.9751 152.9730 156.5627 163.1301 대안3의전망치 121.3806 122.6958 129.0113 134.4324 140.9194 151.9751 152.9730 156.5627 163.1301
104 102 100 98 96 94 92 90 2001 1/4 2001 2/4 2001 3/4 2001 4/4 2002 1/4 2002 2/4 2002 3/4 2002 4/4 2003 1/4 실적치 90.5600 90.6900 91.0100 91.2700 91.7600 93.3800 94.5800 97.7200 100.0000 대안1의전망치 91.2577 90.9707 92.3380 94.0845 92.6006 94.7910 96.4480 98.6614 100.4814 대안2의전망치 92.7542 90.2532 93.2750 94.1600 93.7150 97.6445 97.5684 99.6170 102.2616 대안3의전망치 93.4647 91.3191 93.5357 93.4459 92.9332 93.8101 96.7992 96.6515 100.9765
VAR 2 14. 4VECAIC SC5VEC ( 4).