Krean Chem. Eng. Res., Vl. 43, N. 5, Octber, 2005, pp. 616-620 기상공정에의한구형형상의헥사알루미네이트계형광체제조 Ç Ç içq Ç ly 143-701 ne v k 1 (2005 5 2p r, 2005 9 7p }ˆ) Preparatin f Hexaaluminate Phsphr Particles with Spherical Shape by Gas Phase Reactin Prcess Dae S Jung, Seung Kwn Hng, Hye Yung K, Se Hee JuGand Yun Chan Kang Department f Chemical Engineering, Knkuk University, 1, Hwayang-dng, Gwangjin-gu, Seul 143-701, Krea (Received 2 May 2005; accepted 7 September 2005) k h Ammnium dihydrgen phsphate prp ~ m l rl p p k p ~p ˆ l m p k. pr v kp nkp p m 900 C l 1,650 C pl p n p ˆ r. l ammnium dihydrgen phsphate pr ~ nkp p m 900 C l 1,650 C pl p m p v s r. p m 1,600 C p l ammnium dihydrgen phsphate pr ~ n kp Š k s v k p ~ p l. Ammnium dihydrgen phsphate pr rml ~p p v eˆ rpl. p m 1,650 Cp l l rl p vr rs ~ prp ~ l l} rp r ~m r. Abstract The mrphlgy and phtluminescence characteristics f green light emitting hexaaluminate phsphr particles prepared by high temperature spray pyrlysis frm spray slutin with and withut ammnium dihydrgen phsphate flux were investigated. The particles prepared frm spray slutin withut flux material had hllw mrphlgy at preparatin temperatures between 900 C and 1,650 C. Ammnium dihydrgen phsphate flux added int spray slutin enabled the frmatin f particles with spherical shape and filled mrphlgy at preparatin temperatures between 900 C and 1,650 C. The hexaaluminate phsphr particles with magnetplumbite structure were directly prepared by spray pyrlysis frm spray slutin with ammnium dihydrgen phsphate flux abve 1,600 C. Ammnium dihydrgen phsphate flux was effective in imprving the phtluminescence intensity f the phsphr particles at lw preparatin temperatures. The phsphr particles prepared frm spray slutin with and withut flux material by spray pyrlysis under reducing atmsphere at 1,650 C had cmparable phtluminescence intensities with that f the phsphr particles ptimized by pst-treatment. Key wrds: Phsphr, Spray Pyrlysis, Display Material 1. p p ~ p rs l l Ž d pn ~ p rsl p l p. l p p m p rl p p rs p nkp krp e p krp p p rs l 2 v p. p l p rs p t 100 T whm crrespndence shuld be addressed. E-mail: yckang@knkuk.ac.kr p p v s l p rs l l np. v, p rl p p p p p l p rsl r v k. l p rs q vp v p v k m p n l l nkp rs p kr q pn l krp e mp r l s, l, r rp ~ p krp p ~ p rs rp. p krp p p q s rl 1 p n tl 616
l p v p n p p p v p p q p lv. rs m l p rp n prp ~ lp n p m l s p ~ p [1-4]. l rp scale-up pl p p v n ~p p v. p rs s l krp s l p rp n p ˆp p llv. p p ˆp p lrp kr l ~ p r v eˆ rp p v mp l} rl p p lv p v rrp v. p r k p e p, ld pp ppˆ ~ p ~ p j pn p p [1, 2]. Kang p l r q p n pr l l p ~ p eˆ q m [3, 4]. p l p mp l rl p v ~ l} lp vr rs l p [5-8]. Shimmura m Kijima l} rp v k m l rl p pp v r p Y 2 ~ m., ammnium chlride nkl pr ~ p f ~ p BaMgAl 10 O 17 :Eu ~ m 2+ l rl p vr rs m. ml ~ vr r s krp s l eˆ lp mp n m l l. m l p p r p l rl r l lp l mp p m p rp [9, 10]. l l mp l l p k p s v p ~ vr rs m. k p s v Ce 1-x Tb x (CTMA) ~ qn v qn l sp p p l Žq PDP(plasma display panel) l ~ p l p [11, 12]. m l rl p vr ~ krp s l n p p p. m l rl p vr rs ~p ˆ rl l pr NH 4 ~ m. pr ~ nkp mp l rl p k p s ~p ˆ p mp l} rp ~m m. 2. Ce 0.6 Tb 0.4 (CTMA) s p v ~ l rl p rs m. l rp kr, krp mp l vl p l pp p pq v v. kr 1.7 MHzp v l q ln d n m. 6 p pž v ql p p krp p n e ˆ n ~p 10Í /v dp p 7 l/min r mp, p p 1,000 mm, n 30 mmp k p k p ~ 617 p n m. pž q l p p krp s,, l r pl p p m 900 Cl 1,650 C ve. nkp v l ~ p v m p n rs m. l rl p CTMA ~p rl nkl pr ammnium dihydrgen phsphate(nh 4 ) ~ m. prp ~ p tp 25 wtí v e m. ~p p X r (XRD, RIGAKU, D/ MAX-RB) pn pqp r s mp, pqp ˆ t rq (SEM, JEOL, JSM 6060)p pn m. ~ pqp p Xe n l qžq qn m ll p (Phtluminescence, SHIMADZU, RF-5301PC) p r m. 3. NH 4 pr l rl p CTMA ~p l m p Fig. 1l ˆ. p m l NH 4 prp ~ l ~ p p mp l} rp ~ CTMA ~m p m. Fig. 1l prp ~ p p 20 wtí pr ve. l rl p rp p p ~ pr H 3 B ~ p m 900 Cl llv r ~ p l 1,400 Cl 3e l} rp ~ ll. l rl p rml l mp l} rp CTMA ~ Ž p ˆ v pq qp pl. l rl p p r ~ p ˆ l } rl v r ql p Ž p s r. p CTMA ~p ˆ p l l r l p p CTMA ~ l mp l r p rn m. Fig. 1l l rl p p r NH 4 ~ p m 1,650 Cp ml CTMA ~ mp l} rp ~ Fig. 1. Emissin spectra f CTMA phsphr particles prepared at different temperatures. Krean Chem. Eng. Res., Vl. 43, N. 5, Octber, 2005
618 r Ë d Ë mët Ë ~m r. p m 1,650 C p p qp p ~ e p 0.3 n w. NH 4 ~ p p m l rl p ~ p r m. pr ~ v kp nkp l rl p ~ p m l p m p k. p m 1,650 C l pr ~ v kp nkp ~ 20 wtíp NH 4 pr ~ l CTMA ~m r. l p m nkl NH 4 ~ l ~ p p. p m 1,600 Cp NH 4 pr ~ l ~ pr ~ v kp nkp ~p p 130Ím. Fig. 2 l rl p rs m ~ p l d p ˆ. l rl p ~ p l d p p m l p p v p. p m 1,600 C p l ~ pr p ~ l l d p 278 nml ˆ. l p m 1,500 C p l ~ p l d p 310 nm }l v. p l d p p l rl p ~ p p m l r s vp k p. p m 1,600 C p l llv ~ p CTMA ~p l d p p l wp ~ e l l rl p CTMA p llrpp k p. l p m 1,500 C p l pr NH 4 ~ nl l rl p CTMA p llvv kk pp ~p l d p k p. pr ~ NH 4 l rl p ~p ˆl m p Fig. 3 Fig. 4l ˆ l. Fig. 3 l pr ~ NH 4 p ~ p p 20 wtím. pr ~ l p p m 1,500 Cl 1,650 C v v p m l m p v n s l p. l r l p vr ~p p p m l p m Fig. 2. Excitatin spectra f CTMA phsphr particles at different preparatin temperatures. Fig. 3. SEM phtgraphs f CTMA phsphr particles prepared frm spray slutin with flux material at different preparatin temperatures. 43 5 2005 10k
p k. l rl 1,500 C p p p p m l ~ p p p p. l p m 1,600 C p l ~ p r p p. p ~ p CTMA ~p r q l p. CTMA ~ mp l } rl Ž p r q p p. l rl p 1,600 C p p ml ~ p Ž p CTMA r s v l p p p. mp l rl llv CTMA ~ p Ž p r qp v p l p lv l llv ~ p p p. l rl p CTMA ~ p p p Fig. 1 Fig. 2p ~p l p. l rl p m 1,600 C p l CTMA sp ~ p. Fig. 4 pr NH 4 ~ v kp nl l rl p p m 1,600 Cm 1,650 Cl CTMA ~ p SEM v p ˆ. nkl pr ~ v k CTMA ~ p p l n p ˆ v pp, p r p m 1,600 Cl e m. p m 1,650 Cl llv p p p s v l p pq p n p ˆ v. NH 4 pr ~ l Fig. 3p ~ p pr mp l rl p vr CTMA ~p ˆ l p m p p k p. pr nkl ~ lp l rl p p p m l s l p. p m 900 C p nl p p l pr CTMA ~ q~ np e l rl p ~ s v l. l rl pr CTMA p p l npe r s v. p s v r ~ p p l r sp CTMA ~ llv. Fig. 5 p m l l rl p vr CTMA ~p XRD d p ˆ. p m 1,650 Cl prp ~ l l rl p k p ~ 619 p ~ CTMAp r s l p. p r ~ nkp p m 1,600 Cl ~ CTMA r s l p l 1,500 C p l CTMA p r llvv kk. l rl pq p p l p wp ~ e l 1,600 C p p ml CTMA p llr. Fig. 6p pr ~ NH 4 p ~ p l rl p CTMA ~p ˆ l m p ˆ. Fig. 6p nkl ~ prp ~ l Fig. 4. SEM phtgraphs f CTMA phsphr particles prepared frm spray slutin withut flux material at different temperatures. Fig. 5. XRD spectra f CTMA phsphr particles prepared at different temperatures. Fig. 6. SEM phtgraphs f CTMA phsphr particles prepared at different cncentratins f NH 4 flux. p m 1,650 Cl vr rs ~p SEM v p ˆ. prp ~ p tp 5wtÍ p p n l llv ~ n p ˆ v p. prp ~ p v l llv ~p v pp, prp ~ p tp 15 wtí p l l lv ~ m p s l p. Krean Chem. Eng. Res., Vl. 43, N. 5, Octber, 2005
620 r Ë d Ë mët Ë p q p rp ql v l(kosef, R08-2004-000-10160-0)p vp p lrd. y Fig. 7. Emissin spectra f CTMA phsphr particles prepared at different cncentratins f flux. Fig. 7p NH 4 prp ~ p mp l rl p vr CTMA ~p l m p ˆ. prp ~ CTMA ~p l p m p v kk. prp ~ p 20 wtí p llrp, p p pr ~ v kp nkp ~p p 106Ím. 4. p rp l rl p ~ l r v mp l} rp. l} rl p ~ l pq p pvp p p lv rrp v. l mp l rl p qn l n Ce 0.6 Tb 0.4 (CTMA) ~ m. ~ p v m nkp ~ e p wp s p l rl p CTMA ~ n p ˆ r. l NH 4 pr ~ nkp CTMA ~ p m l p p v s r. NH 4 pr np CTMA ~ p npe l r l llv ~ s v m. mp l rl p vr p CTMA ~ v qn l sp r. 1. Kang, Y. C., Rh, H. S. and Park, S. B., Preparatin f Y 2 :Eu Phsphr Particles f Filled Mrphlgy at High Precursr Cncentratins by Spray Pyrlysis, Adv. Mater., 12, 451-453(2000). 2. Kim, E. J., Kang, Y. C., Park, H. D. and Ryu, S. K., UV and VUV Characteristics f (YGd) 2 :Eu Phsphr Particles Prepared by Spray Pyrlysis frm Plymeric Precursrs, Mater. Res. Bull., 38, 515-524(2003). 3. Rh, H. S., Kim, E. J., Kang, H. S., Kang, Y. C., Park, H. D. and Park, S. B., Vacuum Ultravilet Characteristics f Nan-sized Gd 2 :Eu Phsphr Particles, Jpn. J. Appl. Phys., 42, 2741-2745 (2003). 4. Kang, Y. C., Rh, H. S. and Park, S. B., Use f LiCl Flux in the Preparatin f Y 2 :Eu Phsphr Particles by Spray Pyrlysis, J. Eur. Ceram. Sc., 22, 1661-1665(2002). 5. Shimmura, Y. and Kijima, N., High-Luminance Y 2 Phsphr Synthesis by High Temperature and Alkali Metal In-added Spray Pyrlysis, J. Electrchem. Sc., 151(4), H6-H2(2004). 6. Shimmura, Y. and Kijima, N., High-Temperature Spray Pyrlysis f Y 2 Red Phsphr, Electrchem. Slid-State Lett., 7(2), H1-H4(2004). 7. Shimmura, Y. and Kijima, N., Frmatin Mechanisms and Cntrl Methd f Aluminum-cntaining Impurity in High-temperature Spray Pyrlysis f Y 2 Phsphr, Electrchem. Slid-State Lett., 7(5), H18-H22(2004). 8. Shimmura, Y. and Kijima, N., Effect f Ammnium Chlride Additin n Spray Pyrlysis Synthesis f BaMgAl 10 O 17 :Eu 2+ Phsphr Withut Pst-heating, J. Electrchem. Sc., 151(8), H192- H197(2004). 9. Kang, Y. C., Se, D. J., Park, S. B. and Park, H. D., Mrphlgical and Optical Characteristics f Y 2 :Eu Phsphr Particles Prepared by Flame Spray Pyrlysis, Jpn. J. Appl. Phys., 40(6A), 4083-4086(2001). 10. Chang, H., Lenggr, I. W., Ogi, T. and Okuyama, K., Direct Synthesis f Barium Magnesium Aluminate Blue Phsphr Particles Via a Flame Rute, Mater. Lett., 59(10), 1183-1187(2005). 11. Zhang, J., Zhang, Z., Tang, Z. and Lin, Y., Mn 2+ Luminescence in (Ce,Tb) Phsphr, Mater. Chem. Phys., 72, 81-84(2001). 12. Smets, B. M. J., Phsphrs Based n Rare-earths, A New Era in Flurescent Lighting, Mater. Chem. Phys., 16, 283-299(1987). 43 5 2005 10k