Jurnal f the Krean Ceramic Sciety Vl. 44, N. 12, pp. 683~689, 2007. Grain-Bundary Cnductin in Slid Oxide Electrlyte Jng-Heun Lee Department f Materials Science and Engineering, Krea University, Seul 136-713, Krea (Received Octber 31, 2007; Accepted Nvember 15, 2007) y š w š w œw (2007 10 31 ; 2007 11 15 ) ABSTRACT Grain-bundary cnductin in the flurite-structure slid xide electrlytes such as acceptr-dped zircnia and ceria were reviewed. The siliceus impurity, even several hundreds ppm, affects the inic cnductin acrss grain bundary t a great extent. Varius appraches t imprve grain-bundary cnductin in flurite-structure xide electrlytes have been investigated, which include (1) the scavenging f siliceus phase by the reactin with secnd phase, (2) the gathering f intergranular siliceus phase int a discrete cnfiguratin and (3) the dewetting f intergranular liquid phase by pst-sintering heat treatmtent. key wrds : Grain-bundary cnductin, Slid xide electrlyte, Scavenging, Irnpedance spectrscpy, Slide xide fuel cell 1. y š w y (SOFC, slid xide fuel cell), 1) rv,»yw ƒ 2) y š. yz š,»yw ƒ û» w ƒ w v w. x SOFC»yw ƒ š t š w y g y, g û ƒ l Zr 4+ Ce eyw w 4+ (xgyen vacancy)ƒ. 2ZrO 2 X. A 2 2A zr ' + 3O O +V Ȯ (1) 2CeO 2 X. B 2 2B Ce ' + 3O O +V Ȯ (2) š w w ü w, w, w ù. w w ü w w ww,» w ü w w ù š. ü w w l Crrespnding authr : Jng-Heun Lee E-mail : jngheun@krea.ac.kr Tel : +82-2-3290-3282 Fax : +82-2-928-3584 4+ ƒ w.» w Zr 4+, Ce eyw y ƒw, Zr 4+ 4+ Ce w ƒw w š š. l y ey w w strain ƒ w» w š. lƒ ƒ z w l z w ƒ w w(defect assciate) x w û š. g w Yb 2, Sc 2 ƒ ƒ, CeO 2 w Gd 2, Sm 2 ƒ ƒ ƒƒ ùkü. ù, g ƒ ƒ ƒ w p y g (YSZ, Yttria-Stabilized Zircnia)ƒ ƒ š. y w ü w x. 3) w Bauerleƒ4) 2 g š w w w ü z x ¾ y š. q ã ƒ d w v ü z.,,, e w z w w 683
684 Fig. 1. Tw rigins f grain-bundary resistance in plycrystalline slid electrlyte: (a) the depletin f xygen vacancy and (b) siliceus intergranular phase. w. x g š w w 400-600 C û w, ƒ û œvd w 5,6) Si sww š w ù š. 7,8) (Fig. 1) w w w w, z sww w w ƒƒ wš. p Si 100 ppm ƒ w 100 ƒw, Si sww d w r (sub-mnlayer segregatin)d x ù 1-2 nm Ì x» w š. 9) SiO 2 ƒ w y œ y. SOFC ƒ p w SiO 2 w w. 10), œvd w w j, Si w z w ƒ w. š g š w w j s w j ƒ š» r. 2. g y š w ƒz Fig. 2 y š w ƒ ƒz ù kü. ƒz ƒ ü w - ƒ w ü w wš ü ƒ. ü RC z RC z ƒ, t CaF 2. ƒ 11) z ƒ, j Fig. 2. Schematic diagram f xygen in cnductin in xide slid electrlyte and crrespnding equivalent circuits.»ƒ ù j» ƒ ƒw x ùkü. ƒz w ü w w - j. w j, mw w j., ü mw ƒ ù š, w w š w ù. ƒ» w š w., ü RC z RC z ƒ ƒz w. g š w w ü w 100-1,000 j š š 12) ƒz ww w., Ì, wetting, j w e w. g š w j»ƒ µm, ̃ nm, ƒ ü w sp w 1,000 j š ƒ w (ρ gb 1000ρ gi ), R=ρ(l/A) l ü w(r gi ) w(r gb ) w ƒ. ü j ƒ š ƒ w C=ε 0 ε r (A/d) l ̃ 1/1,000 ƒ ü w eq l ƒ 1,000 j (C gb 1,000C gi )., (R gb C gb ) ü (R gi C gi ) 1,000 ƒ v ƒ q y. 3. g y š w 3.1. Scavenging w w y g w j» w Fe 2, 12) Bi 2, 12) TiO 2, 13) 12-23) ƒ ƒ w wz
. ƒ w j z ƒ š, 15-20) ƒ ƒ ƒ û š. 12,21,23) (1) ƒ r SiO 2 sw ƒ š, (2) ƒ ƒ y g š, (3) y SiO 2» q. ppm w SiO 2 ƒ sw š ƒ 1600 C w 1-20 ml% ù ƒw ƒ w ùkü, 15-19) ƒ 1650-1750 C š 0.4-0.5 ml% ùƒ ƒ ƒ w. 21,23) Gödickemier 14) 0.1-1 wt% SiO 2 0.1-1 wt% ƒ y gƒ w d w, ƒ SiO 2 w ƒ ƒ š šwš, l SiO 2 ƒ š w w š w. 500 ppm SiO 2 sw 15 ml% CaO y g (15CSZ) 4µm 10 µm 1ml% ƒw z 1450-1650 C wš w. 24) 1525 C w ƒ 15 ƒw, 1575 C w ƒ 30-50% w. w š ƒ š w CaO-SiO 2 - s ww š w x w y. y w CaO w. w, SiO 2 100-200 ppm ü ƒ w r (segregatin) w š w w. Aki š 15CSZ w 9) STEM mw Si r dr (mnlayer segregatin) 10% w ü w w 100 f. TEM Si r w w f w. SiO 2 ƒ 100-200 ppm ƒ, Si sww w»ƒ š, ƒƒ SiO 2 sw š w w x»., ƒ SiO 2 scavenging w w». Butler Drennan 20) Y 2 /Yb 2 y g ù ƒw z TEM ww, ü ù Zr-sw (Zr + Si)-sw inclusin wš, w y š w 685 ù Si Al t w cusp š šw. ù ƒ Si scavengingw, v yƒ w ù yƒ w j» w ùkù. 14) 100 ppm SiO 2 sww 8YSZ 1ml% ƒw z v y w ƒ y w z, ppm ¾ mapping ƒ w imaging SIMS (Secndary In Mass Spectrscpy)» w r ü SiO 2 e w. ƒ ƒ r SiO 2 r y w, ƒ ƒ SiO 2 scavenging x y w. ƒ š w SiO 2 scavengingw w x. z ù j» 0.3, 4, 10 µm y j š, ƒ 0.2, 1 ml% yw z scavenging z y w. x w 25) ƒw 80-200 µm ¼ wš w z w ƒw ùkû. x Si sww mw y w» w. Butler Drennan ü 20) ƒ Zr-sw (Zr + Si)-sw inclusin ƒ š š w, ƒ y Si w w w., g š w Si sw mw y q. Fig. 3(a) ù ƒ w š w scavenging ùk ü. 3.2. 2 w w ƒw wš z., ƒw z w ƒ g ü š ƒw, ü ƒ û ƒ w. (Fig. 4) x Miyayama 21) Feighery šwš 17), Al Zr '-.... V O w w (-143 kj/ml)ƒ Y Zr '-V O w w (-39 kj/ml) û ƒ 26) w w w., ù ƒ w ƒ ù ƒ w ü ƒ ƒ j» ƒ w. 44«12y(2007)
686 Fig. 3. Schematic diagram f (a) additive scavenging and (b) precursr scavenging. Fig. 4. Schematic diagram f impedance change by the incrpratin f int YSZ lattices. w w» w ù ƒw š y g w w w. 120 ppm SiO 2 sww 8YSZ(8 ml% Yttria Stabilized Zircnia) r 1200 C 10 1 w z 1500 C w, ù ƒw š 7 w k. w 27) ù ƒw w, 1200 Cƒ ƒ, 10 ƒ v w. ù ƒ ƒw š (precursr) scavenging ùkü w x precursr scavenging w.» x ³ w» w 100 ppm Si w ù f, x. x mw ZrSiO 4 x scavenging» š q w. ZrSiO 4 y y ƒ 28)»., ZrO 2 SiO 2 yw 1500-1600 C š k ZrSiO 4, ZrO 2 SiO 2ƒ sw. 28) 0.5-2 wt% ZrSiO 4 seed ƒw z w ZrSiO 4, 29-31) ZrSiO 4ƒ epitaxial» w. Mri 29) ZrSiO 4 w ƒ 1200 C šw, ew., 1200 C 8YSZ r w ZrSiO 4 w š, z š ZrSiO 4 w w w SiO 2 (discrete) y j q. (Fig. 3(b)) w ZrSiO 4 1700 C w, 28) 1500-1600 C ZrSiO 4 w š z w k q. 2 w w z w» w 80, 170 ppm SiO 2 sww 8YbSZ(8 ml% Ytterbia Stabilized Zircnia) r w š x y w. 32) x ƒ 1250 C 8YSZ wš, 10 ƒ v w ùkû. 2 w w y g. 2 w, SiO 2 ¾ scavenging w w. 33) 8YSZ r sw SiO 2 100, 160, 310, 1000 ppm w z 1200 C 40 1 wš, 1500-1600 C 4 w r w. SiO 2 ƒ 160 ppm w 2 w ƒ 5 w, SiO 2 ƒ 300 ppm 2 w ƒ w. precursr scavenging SiO 2 ƒ z w. 3.3 Dewetting w w 15CSZ r r sw SiO 2 w û CaO-SiO 2 - x w. 34,35), w j w e. w 36), wetting yw. wetting w. 15CSZ r (1) 1550 C 4, (2) w wz
1300 C 10 + 1550 C 4, (3) 1550 C 4 + 1300 C 10 3ƒ w z v d w. x y j, z 1300 C 10 w ƒ 7 ƒw. TEM z w dewetting y w. ƒ (dihedral angle, φ). = φ γ g 2γ SL cs-- 2 γ g, γ SL ƒƒ š (slid-liquid). y γ SL w š - š γ SS' ë š, γ SS' γ SL j, y ƒ 37) ƒw dewetting ù q.,» z ƒ, z w ƒ w w. (Fig. 5) 4. y š w 4.1. Scavenging w w GDC(Gd 2 -dped CeO 2 ) SDC(Sm 2 -dped CeO 2 ) t š w Siƒ sw w - ƒ š š š. 38-41) ù, š w w j g š w w š ü. Lane 42) 50-500 ppm SiO 2 sww GDC r CaO SrO 1-2 ml% ƒw z 1450 C w ƒ j s w x šw. š w w w ƒ w. Lane SEM Ca Siƒ l CaOƒ SiO 2 w scavenging w š q w. 43) 500 ppm SiO 2 sww GDC 2 ml% CaO ƒw ƒ 50 w y w. 2ml% CaO ƒw GDC r X- z 2 Fig. 5. Dewetting f intergranular phase by crystallizatin. y š w 687 (3), SEM w». CaOƒ CeO 2 ü š w, ƒ 1500 C Lane 42) wù q. TEM w CaO ƒw ƒ faceting w w. ƒ facet ƒ w (cherency)ƒ f w, SiO 2 sww r ù ƒ w ƒ š w. š CaOƒ SiO 2 w scavenging g ƒ w. 44) 500 ppm SiO 2 sww GDC x Sr-acetate w ww z, w š 1500 C w. r w 7 mm, 7.5 mm, Ì 0.9 mm r. j» 0.5 2mm 2 0.5 mm 8 w z 1100 C w. w Sr y v d w. d Sr ƒ ƒ 120 w w. SrO ƒ w GDC ƒ w w. 45) GDC w j scavenger MgO w. CaO SrOƒ ü š w, MgO ü š. 8 Ca 2+, Sr j» ƒƒ 2+ 1.12 Å, 1.25 Å Gd 3+ (1.06 Å), Ce 4+ (0.97 Å) w j. 46) 8 2+ Mg 0.89 Å 4+ Gd 3+, Ce w. interstice j» ƒw š», interstice j» j š w. ƒ q w» ƒ y»., MgO CaO, SrO ƒ 2 w. 500 ppm SiO 2 sww GDC r 0.3 ml% MgO ƒw ƒ 45 ƒw. EELS EBSD w š š MgOƒ w SiO 2 w Mg 2 SiO 4 x w y w. SiO 2 500 ppm 0.144 ml% w Mg 2 SiO 4 x w» w MgO 0.288 ml%. x 0.3 ml% ew, SiO 2 mw y w MgO wš Mg 2 SiO 4 x w q. 4.2. z w w 47) 500 ppm GDC 2 w 44«12y(2007)
688 w w w. (1) 1500 C 4, (2) 1350 C 20 + 1500 C 4, (3) 1500 C 4 + 1350 C 20 3ƒ r w ƒ yƒ, z ƒ 4 w. ƒ w j»ƒ y, w w y. z w w Si sw 2 w ù, ƒ y» q. 5. g š w w š w. SiO 2 - ppm û r w j s ƒ jš, w / y k. ƒ û y w» w SiO 2 w v w. w (1) ƒ w SiO 2 sw scavenging, (2) SiO 2 sw y, (3) y mw dewetting. scavenging w ƒ g š, SiO 2 yw š w. Acknwledgment œ» w (2005-N-PV03-P-02) w w. REFERENCES 1. B. C. H. Steele, Material Science and Engineering: The Enabling Technlgy fr the Cmmercializatin f Fuel Cell Systems, J. Mater. Sci., 36 1053-68 (2001). 2. J. -H. Lee, Review n Zircnia Air-Fuel Rati Sensrs fr Autmtive Applicatins, J. Mater. Sci., 38 4247-57 (2003). 3. J. A. Kilner, Fast Anin Transprt in Slids, Slid State Inics, 8 201-07 (1983). 4. J. E. Bauerle, Study f Slid Electrlyte Plarizatin by a Cmplex Admittance Methd, J. Phys. Chem. Slids, 30 2657-69 (1969). 5. X. Gu, Physical Origin f the Intrinsic Grain-Bundary Resistivity f Stabilized-Zircnia: Rle f the Space-Charge Layers, Slid State Inics, 81 235-42 (1995). 6. X. Gu and R. Waser, Electrical Prperties f the Grain Bundaries f Oxygen In Cnductrs: Acceptr-Dped Zircnia and Ceria, Prg. Mater. Sci., 51 151-210 (2006). 7. N. M. Beekmans and L. Heyne, Crelatin between Impedance, Micrstructure and Cmpsitin f Calcia-Stabilized Zircnia, Electrchemica Acta, 21 303-10 (1976). 8. S. P. S. Badwal, F. T. Ciacchi, S. Rajendran, and J. Drennan, An Investigatin f Cnductivity, Micrstructure and Stability f Electrlyte Cmpsitins in the System 9 ml% (Sc 2 -Y 2 )- ZrO 2 ( ), Slid State Inics, 109 167-86 (1998). 9. M. Aki, Y. -M. Chiang, I. Ksacki, J. -R. Lee, H. Tuller, and Y. Liu, Slute Segregatin and Grain-Bundary Impedance in High-Purity Stabilized Zircnia, J. Am. Ceram. Sc., 79 1169-80 (1996). 10. B. C. H. Steele, Appraisal f Ce 1-y Gd y O 2-y/2 Electrlytes fr IT-SOFC Operatin at 500 C, Slid State Inics, 129 95-110 (2000). 11. W. Puin, S. Rdewald, R. Ramlau, P. Heitjans, and J. Maier, Lcal and verall inic cnductivity in nanscrystalline CaF 2, Slid State Inics, 131 159-64 (2000). 12. M. J. Verkerk, A. J. A. Winnubst, and A. J. Burggraaf, Effect f Impurities n Sintering and Cnductivity f Yttria-Stabilized Zircnia, J. Mater. Sci., 17 3113-22 (1982). 13. K. C. Radfrd and R. J. Brattn, Zircnia Electrlyte Cells, Part 2 Electrical Prperties, J. Mater. Sci., 14 66-69 (1979) 14. M. Gödickemier, B. Michel, A. Orliukas, P. Bhac, K. Sasaki, L. Gauckler, H. Henrich, P. Schwander, G. Kstrz, H. Hfmann, and O. Frei, Effect f Intergranular Glass Films n the Electrical Cnductivity f 3Y-TZP, J. Mater. Res., 9 1228-40 (1994). 15. J. -H. Lee, T. Mri, J. -G. Li, T. Ikegami, M. Kmatsu, and H. Haneda, Imaging Secndary-In Mass Spectrscpy Observatin f the Scavenging f Siliceus Film frm 8- ml%-yttria-stabilized Zircnia by the Additin f Alumina, J. Am. Ceram. Sc., 83 1273-75 (2000). 16. S. Rajendran, J. Drennan, S. P. S. Badwal, Effect f Alumina Additins n the Grain Bundary and Vlume Resistivity f Tetragnal Zircnia Plycrystals, J. Mater. Sci. Lett., 6 1431-34 (1987). 17. A. J. Feighery and J. T. S. Irvine, Effect f Alumina Additins upn Electrical Prperties f 8 ml.% Yttria-Stabilised Zircnia, Slid State Inics, 121 209-16 (1999). 18. M. Filal, C. Pett, M. Mkchah, C. Chateau, and J. L. Carpentier, Inic Cnductivity f Yttrium-Dped Zircnia and the cmpsite effect, Slid State Inics, 80 27-35 (1995). 19. X. Gu, C. -Q. Tang, and R. -Z. Yuan, Grain Bundary Inic Cnductin in Zircnia-Based Slid Electrlyte with Alumina Additin, J. Eur. Ceram. Sc., 15 25-32 (1995). 20. E. P. Butler and J. Drennan, Micrstructural Analysis f Sintered High-Cnductivity Zircnia with Additins, J. Am. Ceram. Sc., 65 474-78 (1982) 21. M. Miyayama, H. Yanagida, and A. Asada, Effects f Additins n Resistivity and Micrestructure f Yttria- Stabilized Zircnia, Am. Ceram. Sc. Bull., 65 660-64 (1986). 22. A. Yuzaki and A. Kishimt, Effects f Alumina Dispersin n Inic Cnductin f Tughened Zircnia Base Cmpsite, Slid State Inics, 116 47-51 (1999). w wz
y š w 689 23. X. Gu, Rles f Alumina in Zircnia fr Functinal Applicatins, J. Am. Ceram. Sc., 86 1867-73 (2003). 24. J. -H. Lee, T. Mri, J. G. Li, T. Ikegami, and S. Takenuchi, The Influence f Alumina Additin and Its Distributin upn Grain-Bundary Cnductin in 15 ml.% Calcia-Stabilized Zircnia, Ceram. Int., 27 269-76 (2001). 25. J. -H. Lee, T. Mri, J. -G. Li, T. Ikegami, M. Kmatsu, and H. Haneda, The Influence f Alumina Distributins upn Scavenging Highly Resistive Grain-Bundary Phase f 8 ml% Yttria-Stabilized Zircnia, Electrchemistry, 68 [6] 427-32 (2000). 26. W. C. Mackrdt and P. M. Wdrw, Theretical Estimates f Pint Defect Energies in Cubic Zircnia, J. Am. Ceram. Sc., 69 [3] 277-80 (1986). 27. J. -H. Lee, T. Mri, J. -G. Li, T. Ikegami, M. Kmatsu, and H. Haneda, Imprvement f Grain-bundary Cnductivity f 8 ml% Yttria-Stabilized Zircnia by Precursr Scavenging f Siliceus Phase, J. Electrchem. Sc., 147 [7] 2822-29 (2000). 28. Y. Kann, Thermdynamic and Crystallgraphic Discussin f the Frmatin and Dissciatin f Zircn, J. Mater. Sci., 24 2415-20 (1989). 29. T. Mri, H. Yamamura, K. Kbayashi, and T. Mitamura, Frmatin Mechanism f ZrSiO 4 Pwders, J. Mater. Sci., 28 4970-73 (1993). 30. G. Vilmin, S. Kmarneni, and R. Ry, Lwering Crystallizatin Temperature f Zircn by Nanhetergeneus Sl-Gel Prcessing, J. Mater. Sci., 22 3556-60 (1987). 31. Y. Shi, X. Huang, and D. Yan, Preparatin and Characterizatin f Highly Pure Fine Zircn Pwder, J. Eur. Ceram. Sc., 13 113-19 (1994). 32. J. -H. Lee, T. Mri, J. -G. Li, T. Ikegami, J. Drennan, and D. -Y. Kim, Precursr Scavenging f Resistive Grain-Bundary Phase in 8 ml% Ytterbia-Stabilized Zircnia, J. Electrchem. Sc., 149 [3] J35-J40 (2002). 33. J. -H. Lee, T. Mri, J. -G. Li, T. Ikegami, J. Drennan, and D. -Y. Kim, Precursr Scavenging f Resistive Grain-Bundary Phase in 8 ml% Yttria-Stabilized Zircnia: The Effect f Trace Cncentratins f SiO 2, J. Mater. Res., 16 [8] 2377-83 (2001). 34. J. -H. Lee, J. -H. Lee, Y. -S. Jung, and D. -Y. Kim, Effect f Additin n the Distributin f Intergranular Liquid-Phase During Sintering f 15 ml% Calcia-Stabilized Zircnia, J. Am. Ceram. Sc., 86 [9] 1518-21 (2003). 35. J. -H. Lee, J. H. Lee, and D. -Y. Kim, The Inhmgeneity f Grain-Bundary Resistivity in Calcia-Stabilized Zircnia, J. Am. Ceram. Sc., 85 [6] 1622-24 (2002). 36. Y. -S. Jung, J. -H. Lee, J. H. Lee, and D.-Y. Kim, The Imprvement f Grain-Bundary Cnductin in 15 ml% Calcia-Stabilized Zircnia, J. Electrchem. Sc., 150 [10] J49-J53 (2003). 37. Y.-M. Chiang, Physical Ceramics, p. 362, Jhn Wiley, New Yrk, 1997. 38. R. Gerhardt and A. S. Nwick, Grain-Bundary Effect in Ceria Dped with Trivalent Catins: I, Electrical Measurements, J. Am. Ceram. Sc., 69 641-46 (1986). 39. R. Gerhardt, A. S. Nwick, M. E. Mchel, and I. Dumler, Grain-Bundary Effect in Ceria Dped with Trivalent Catins: II, Micrstructure and Micranalysis, J. Am. Ceram. Sc., 69 647-51 (1986). 40. T. S. Zhang, J. Ma, Y. J. Leng, S. H. Chan, P. Hing, and J. A. Kilner, Intermediate-Temperature Inic Cnductivity f Ceria-Based Slid Slutins as a Functin f Gadlinia and Silica Cntents, Slid State Sci., 6 565-72 (2004). 41. P. Jasinski, V. Petrvsky, T. Suzuki, and H. U. Andersn, Impedance Studies f Diffusin Phenmena and Inic and Electrnic Cnductivity f Cerium Oxide, J. Electrchem. Sc., 152 J27-J32 (2005). 42. J. A. Lane, J. L. Neff, and G. M. Christie, Mitigatin f the Deleterius Effect f Silicn Species n the Cnductivity f Ceria Electrlytes, Slid State Inics, 177 1911-15 (2006). 43. P. -S. Ch, S. B. Lee, D. -S. Kim, J. -H. Lee, D. -Y. Kim, and H. -M. Park, Imprvement f Grain-Bundary Cnductin in Gadlinia-Dped Ceria by the Additin f CaO, Electrchemical and Slid-State Letters, 9 [9] A399-A402 (2006). 44. D. K. Kim, P. -S. Ch, J. -H. Lee, D. -Y. Kim, H. -M. Park, G. Auchterlnie, and J. Drennan, Mitigatin f Highly Resistive Grain-Bundary Phase in Gadlinia-Dped Ceria by the Additin f SrO, Electrchemical and Slid-state Letters., 10 [5] B91-B95 (2007). 45. Y. H. Ch, P. -S. Ch, G. Auchterlnie, D. K. Kim, J.-H. Lee, D. -Y. Kim, H. -M. Park, and J. Drennan, Enhancement f Grain-Bundary Cnductin in Gadlinia-Dped Ceria by the Scavenging f Highly Resistive Siliceus Phase, Acta Mater., 55 4807-15 (2007). 46. H. Yahir, T. Ohuchi, K. Eguchi, and H. Arai, Electrical Prperties and Micrstructure in the System Ceria-alkaline Earth Oxide, J. Mater. Sci., 23 1036-1041 (1988). 47. D. -S. Kim, P. -S. Ch, J. -H. Lee, D. -Y. Kim, and S. B. Lee Imprvement f Grain-bundary Cnductin in Gadliniadped Ceria Via Pst-sintering Heat Treatment, Slid State Inics, 177 2125-21 (2006). 44«12y(2007)