Jurnal f the Krean Ceramic Sciety Vl. 46, N. 5, pp. 58~533, 009. DOI:10.4191/KCERS.009.46.5.58 Effects f β-sic Particle Seeds n Mrphlgy and Size f High Purity β-sic Pwder Synthesized using Sl-Gel Prcess Gyu-Mi Kim*, **, Gyung-Sun Ch*, and Sang-Whan Park* *Material Science & Technlgy Research Divisin, Krea Institute f Science and Technlgy, Seul 136-791, Krea **Department Materials Science and Engineering, Krea University, Seul 136-701, Krea (Received August 3, 009; Revised September 14, 009; Accepted September 16, 009) β-sic Seedsƒ Sl-gel œ w š β-sic x j» e w ½³ *, **Á *Á y* *w w»» **š w œw (009 8 3 ; 009 9 14 ; 009 9 16 ) ABSTRACT High purity β-sic pwders were synthesized using sl-gel prcessing. TEOS and phenl resin were used as the starting material fr the silicn surce and carbn surce, respectively. The prcess turned ut t be capable f prducing high purity SiC pwder purity degree with 99.98 %. Hwever, it was difficult t cntrl the shape and size f β-sic pwders synthesized by sl-gel prcess. In this study, β-sic pwder with size f 1~5 um an 30 nm were used as the seeds fr β-sic t cntrl the β-sic pwder mrphlgy. It was fund that β-sic pwder seeds was effective t increase the pwder average size f synthesized β-sic using sl-gel prcess by acting as the preferred grwing sites fr β-sic. Key wrds : Sl-gel prcess, Synthesis f SiC, ß-SiC, Pwder, High purity, Seeds 1. ky³ (SiC) ü, š š, š ƒ ü ƒ» s š. 1-4) Si wafer yƒ w» š id w š œ š üyw p w ky³ ƒ š. š œ š ky³ š ky³, CVD ky³ ky³ ƒ š œ t y y p, p, ep r. š œ ky³ p š w» w š ƒ š ù Crrespnding authr : Sang-Whan Park E-mail : spark@kist.re.kr Tel : +8--958-5475 Fax : +8--958-5489 š ky³ p œ t w š» š œ ky³ š CVD gq w t š. 5) ky³ ³ Achesn prcess ³ k yww» š carbthermal reductin q SiC š ù, α-sic ƒ û š œ t w» w ƒ š y œ. Carbthermal reductin š k k ³ yww š ky³ w w œ û β-sic w w ù k ³ ³ w yw» w z SiO carbn w š ky³ ww, w ky³ j» x ƒ š š. 6,7) 58
59 ½³ Á Á y š ky³ w œ š y w š ky³ w w yw» (chemical vapr depsitin prcess, CVD prcess) sl-gel prcess. 8-1) CVD w ky³ w w j» s sub micrmeter j» š β-sic w ù, β-sic j»ƒ 1µm w» w š œ ky³ ww. w, CVD w ky³ w ww š ƒ» w š. š ky³ w wù sl-gel œ ³ k ³ w yww hybrid gel w z š š ky³ w w œ. 13-16) Kurachi 17-0) phenl resin ethylsilicate w ³ w yww z ƒ w œ hybrid gel w z š š β-sic w. w, ³ tetraethyl rthsilicate (TEOS) tetramethyl rthsilicate(tmos) wš k phenl resin w sl-gel œ hybrid gel w z 1700~1800 C š β-sic w w, w β-sic j» hybrid gel œ, w ùkû ù micrmeter w. 1,) Sl-gel œ w š ky³ œ wš ¾ yw œ» ³ š œ ƒ û w β-sic x j»» ¾ y ƒ š š. k Phenl resin ³ TEOS w sl-gel hybrid gel w z š œ š β-sic w w. Sl-gel œ w ky³ w œ w β-sic x j» w» w ky³ w w seeds w j» β-sic particle hybrid gel SiC precursr ƒw sl-gel w β-sic j» x e w w.. x Table 1 Sl-gel š SiC w w x ³ Table 1. Starting Materials used in This Study Materials Supplier Remark Purity/Size Tetraethyl Orthsilicate Aldrich TEOS 98% Tluene sulfnic acid Aldrich P-TSA >98.5% Nvlac type Phenl Resin Klng SPR Carbn cntents>55% purity>90% Nan SiC particle MIT Ave. size=30 nm Micr SiC particle KIST Ave. size=1~5 µm Fig. 1. Experimental prcedure fr synthesis f β-sic pwder using sl-gel prcess. lp p f p (tetraethyl rthsilicate (Si(OCH 3 ) 4, TEOS, 98%, Sigma Aldrich) w š, p-tsa(98.5%, Sigma Aldrich), k k r (Klng C.) w. r e w d w» w r y» carbnizatiny y d w e w w. phenl resin ü e l hybride gel ü C/Si 1.6. Fig. 1 sl-gel š β-sic w» w xœ. Slgel š β-sic w w r TEOS ³ w yw w r k ww TEOS yww, TEOS ƒ w w tluene sulfnic acid (p-tsa, 30 wt% ) ƒw 40 C 400 rpm 36 w. hybrid gel 100 C 4, 900 C(5 C/min) 30» w SiC precursr w. β-sic x j» w Table 1 30 nm j» SiC 1~5 µm j» β-sic 1, 5, 10 wt% y g hybrid gel yww z, 1800 C 3 Ar w wz
β-sic Seedsƒ Sl-gel œ w š β-sic x j» e w 530 Fig.. The thermal behavir f phenlic resin in N atmsphere.» w w š β-sic w w. 1~5 µm j» β-sic x w. phenl resin, hybrid gel SiC precursr š w β-sic FT-IR(Furier transfrm infrared spectrscpy)» w n w, X- z e w. w SEM(scanning electrn micrscpy) w w β-sic w. 3. š TEOS 4ml (p-tsa) w ƒ wƒ, wì yw r w w gel k. β-sic w C/Si ml rati š β-sic w w ƒ w r x w. Fig. r TG(therm gravimetric analysis) DSC(differential scanning calrimetry) 400 C l 800 C¾ w yƒ w š 800 C 1100 C ¾ yƒ y w. r carbnizatin 800 C q 1100 C e w 5%. l hybrid gel w N»w 900 C w SiC precursr w. Fig. 3 r, C/Si ml rati hybrid gel, SiC precursr w β-sic FT-IR rp. r hybrid gel O-H bnding (3600~3100 cm 1 ), benzene ring (1605, 1587, 1493 cm 1 ), Si-O-Si (150~1050, 480 cm 1 ) š C-O bnding (100 cm 1 ) š, hybrid gel 900 C w w SiC precursr hybrid gel Fig. 3. Furier transfrm infrared spectra f (a) phenl resin, (b) dried hybrid gel, (c) SiC precursr after heat treatment f hybrid gel, and (d) synthesized β-sic pwder. vj O-H, benzene ring, Si-O-Si bnding. SiC precursr 1800 C w w β-sic 796 cm 1 Si-C bnding. w r TG 400 C l 800 C ¾ w y w O-H bnding, benzene ring { 800 C. Si-O-Si bnding š carbn y ky Si-C bnding x š SiO 1800 C 3 r ƒ. Fig. 4 C/Si ml rati hybrid gel, SiC precursr, 1350 C 1800 C w β-sic 1~5 um j» β-sic seeds 1wt% ƒ g w β-sic XRD z pattern. Fig. 4 hybrid gel SiC precursr brad w ùkù carbn peak. 1350 C w SiC 0 y e w brad diffractin pattern ùkû û w û β-sic w. sl-gel prcess w ³ k yww hybrid gel ³ SiO k Cƒ ³ w yw» 1350 C β-sic e XRD peak yw ùkù SiO wì w ƒ. 1800 C w SiC XRD 0 y e w ùkù brad diffractin pattern β-sic 46«5y(009)
김규미 조경선 박상환 531 Fig. 6. Fig. 4. XRD patterns f (a) dried hybrid gel, (b) SiC precursr, (c) SiC pwders synthesized at 1350C fr 1 h, (d) SiC pwders synthesized at 1800C fr 3 h, and (e) SiC pwders synthesized at 1800C with β-sic seeds fr 3 h. SEM f synthesized β-sic pwder using dried hybrid gel with the additin f 1~5 µm sized β-sic pwder seeds; (a) 0 wt%, (b) 1 wt%, (c) 5 wt%, and (d) 10 wt%. 를 보여준다. 1350 C에서 합성된 분말은 SEM 미세구조 및 XRD pattern에서 보여주는 것과 같이 10 nm 이하 크기 의 β-sic 입자 및 미반응 카본입자 및 SiO 입자로 이루어 져 있다. Hybrid gel을 열처리하여 제조된 SiC precursr는 1350 C에서 환원 및 탄화반응이 진행됨에 따라 crss link 된 SiC precursr 내 카본 과 SiO 가 반응하여 초기단계에 는 나노 크기의 β-sic 입자가 합성되며, 합성 시간의 증 가 및 합성온도의 증가에 따라 미반응 SiO 및 카본과의 사이에서 반응이 진행되어 새롭게 합성되는 β-sic의 증 착 및 10 nm 이하 크기의 β-sic 입자 사이에서의 입자 성 장으로 β-sic 입자의 성장이 일어나는 것으로 생각된다. Fig. 6은 건조된 hybrid gel 분말과 1~5 µm 크기의 β-sic 분말 seeds를 0 wt%, 1 wt%, 5 wt% 및 10 wt% 혼합하여 1800 C에서 3시간 동안 합성한 β-sic 분말의 SEM 미세구 조를 보여준다. β-sic 분말 seeds를 첨가하지 않고 합성된 β-sic 분말의 미세구조는 Fig. 6(a)에서 보여주는 것과 같 이 합성된 β-sic 분말의 입자 크기 분포는 넓게 관찰되었 으며 합성된 β-sic 분말의 크기는 대체적으로 약 5 µm 이 하이었다. 1350 C에서 합성된 β-sic 분말의 미세구조와 비 교하여 β-sic 분말의 입자 크기는 크게 증가하였으며 합 성된 입자의 형태로부터 β-sic 입자의 결정도도 증가된 것 으로 나타났다. 본 연구에서 합성된 β-sic 분말의 순도는 99.98% 이상이었다. β-sic 입자 seeds를 1 wt% 첨가하여 합성된 β-sic 분말의 SEM 미세구조는 β-sic 분말의 seeds 를 첨가하지 않고 합성된 β-sic 분말보다 입자크기는 증 가되었고 입자 크기 분포가 좁아지는 것으로 나타났다. Fig. 6(b)에서 보여주는 것과 같이 합성된 β-sic 입자의 최 대 크기는 15 µm 정도이었다. 따라서 첨가된 SiC seeds 입 자 표면은 합성 원료 내 카본 과 SiO 가 반응하여 초기단 계에서 형성되는 β-sic의 우선적인 합성 위치로 작용하여 Fig. 5. SEM f synthesized β-sic pwders at 1350C. 되었다. 1350 C에서 나타나는 결정도가 낮은 β-sic 결정 상은 합성온도가 1800 C로 증가됨에 따라 높은 결정도를 갖는 β-sic 결정상으로 나타났으며 미반응 카본 및 미반 응 SiO 사이에서 환원 및 탄화반응이 진행되어 β-sic로 합성되면서 순도가 높은 β-sic가 합성되는 것으로 생각 된다. β-sic 분말의 seeds를 1 wt% 첨가시켜 합성된 SiC 의 XRD 회절 pattern은 β-sic 분말의 seeds가 첨가되지 않고 합성된 SiC의 XRD 회절 pattern과 동일하게 관찰되 었으며, β-sic seeds의 첨가는 합성된 SiC의 결정상에 영 향을 미치지 않는 것으로 생각된다. Fig. 5는 C/Si ml rati로 제조된 hybrid gel을 사용하 여 1350 C에서 1시간 동안 합성된 분말의 SEM 미세구조 한국세라믹학회지
β-sic Seedsƒ Sl-gel œ w š β-sic x j» e w 53 Fig. 7. SEM f synthesized β-sic pwder using dried hybrid gel with the additin f 10 nm sized β-sic pwder seeds; (a) 1 wt% and (b) 10 wt%. ù š β-sic ù 15 µm j» j β-sic w ƒ. hybrid gel ü ƒ β-sic seeds ƒ Fig. 6(c) (d) w β-sic j» w w β- SiC j» s ƒ ùkû. hybrid gel ü ƒ β-sic seeds ƒ β-sic w e ƒ ƒ š β-sic w w SiO e» w β-sic j»ƒ β-sic j» sƒ f ƒ. ù β-sic seeds 5 10 wt% ƒw w β-sic j» β-sic seeds ƒw š w β-sic j» ƒ ùkû. Fig. 7 hybrid gel 30 nm j» β-sic seeds 1wt% 10 wt% yww 1800 C 3 w w β-sic SEM. 30 nm j» β-sic seeds 1wt% ƒw w β-sic SEM Fig. 7(a) β-sic seeds ƒw š w β-sic j» ƒ w β-sic j» 18 µm j» sƒ w. 30 nm j» SiC seeds ƒ 1~5 µm j» β-sic seeds ƒ w β- SiC s z w ùkû. hybrid gel ü ƒ β-sic seeds 10 wt% ƒ 1~5 µm j» β- SiC seeds ƒw w β-sic w β-sic j» w w w β-sic j» s ƒw. hybrid gel ü ƒ 30 nm j» β-sic seeds t 1~5 µm j» β-sic seeds t j ƒ e SiO w β-sic eƒ j ƒ w» l 30 nm j» β-sic seeds y y š ù j» ƒ w j ƒ j j» β-sic w ƒ w yw» w ƒ ƒ. 4. TEOS r w sl-gel hybrid gel 900 C 30 N»w w SiC precursr w z 1800 C 3 Ar»w w g ƒ 99.98% β-sic w w. 1~5 µm j» β-sic 30 nm j» β-sic seed hybrid gel 1wt%, 5wt%, 10wt% ƒƒ w SiC j» x e w w. 5 µm j» β-sic seeds 1wt% ƒ j»ƒ 15 µm¾ û, j» sƒ w. 5 µm j» β-sic seeds 5 wt%, 10 wt% ƒ w β-sic j» š j» s w ƒ ùkû, 5 µm j» β-sic seeds 5 wt%, 10 wt% ƒ w 1~5 µm j» β-sic seeds ƒw š w β-sic j» ƒ š j» s w. 30 nm j» β-sic seeds ƒw β-sic w w, j»ƒ 18 µm 1~5 µm j» β-sic ƒ w β-sic s z ƒ w. Acknwledgment» w. REFERENCES 1. N. Kageyama, Silicn Carbide Prducts fr Silicn Semicnductr Manufacturing, Ceramics, Jpn., 30 [5] 44-7 (1995).. J. A. Tmanvich, LPCVD Cmpnents Trend Tward SiC, Slid State Tech., 40 [6] 135-41 (1997). 3. K. Segawara, Intrductry Remarks n Ceramics fr Silicn Semicnductr Manufacturing VLSI Fabricatin and its Related, Ceramics, Jpn., 30 [5] 409-14 (1995). 4. K. Fhiraishi, Silica Glass fr Semicnductr Prcess, Ceramics, Jpn., 30 [5] 415-18 (1995). 5. www.pc.cm 6. Wei GC, Kennedy CR, and Harris LA, Synthesis f Sin- 46«5y(009)
533 ½³ Á Á y terable SiC Pwders by Carbthermic Reductin f Gelderived Precursrs and Pyrlysis f Plycarbsilane, Am Ceram. Sc. Bull., 63 1054-61 (1984). 7. A. Chrysanthu and P. Grievesn, Frmatin f Silicn Carbide Whiskers and Their Micrstructure, J. Mat. Sct., 6 3463-76 (1991). 8. H. Rbert Baumgartner and B. R. Rssin, Pressureless Sintering and Prperties f Plasma Synthesized SiC pwder, Ceramic Transactins, 3-16 (1987). 9. K. M. Rigtrup and R. A. Cutler, Synthesis f Submicrn Carbide pwder, Ceramic Transactins, 17-33 (1987). 10. D. A. White, S. M. Oleff, R. D. Byer, P. A. Budinger, and J. R. Fx, Preparatin f Silicn Carbide frm Organsilicn Gels: I, Synthesis and Characterizatin f Precursr Gels, Adv. Ceram. Mat., [1] 45-5 (1987). 11. White, D. A., Oleff, S. M., and Fx, J. R. Preparatin f Silicn Carbide frm Organsilicn Gels: II, Gel Pyrlysis and SiC Characterizatin, Adv. Ceram. Mater., [1] 53-9 (1987). 1. M. Narisawa, K. Yamane, Y. Okabe, and K. OKamura, Carbn-Silica Ally Material as Silicn Carbide Precursr Prepared frm Phenl Resin and Ethyl Silicate, J. Mater. Res., 14 [1] 4587-93 (1999). 13. J. Y. Gu, F. Gitzhfer, and M. I. Buls, Inductin Plasma Synthesis f Ultrafine SiC Pwders, J. Mater. Sci., 30 5589-99 (1995). 14. Y. Li, Y. Liang, F. Zheng, and Z. Hu, Carbn Dixide laser Synthesis f Ultrafine Silicn Carbide Pwders frm Diethxydimethylsilane, J. Am. Ceram. Sc., 77 166-64 (1994). 15. I.N. Khlmanv, A. Kharlamv, E. Barbrini, C. Lenardi, A. Li Bassi, C.E. Bttani, C. Ducati, S. Maffi, N.V. Kirillva, P. Milani, and J. Nansci, A Simple Methd fr the Synthesis f Silicn Carbide Nanrds, J. Nansci Nantech, [5] 453-56 (00). 16. P.J. Guichelaar, in: A.W. Weimer (Ed.), pp. 115-9 Carbide, Nitride and Bride Materials Synthesis and Prcessing, Chapman and Hall, New Yrk, 1997. 17. S. Ishihara, H. Tanaka, and T. Nishimura Synthesis f Silicn Carbide Pwders frm Fumed Silica Pwder and Phenlic Resin, J. Mater. Res., 1 [5] 1167-74 (006). 18. J. Li, J. Tian, and L, Dng Synthesis f SiC Precursrs by Tw-step Sl-gel Prcess and Their Cnversin t SiC Pwders, J. Eur. Ceram. Sc., 77 1853-57 (000). 19. H. Tanaka and Y. Kurachi, Synthesis f β-sic Pwder frm Organic Precursr and its Sinterability, Ceram. Inter., 14 109-15 (1988). 0. L. Shi, H. Zha, Y. Yan, Z. Li, and C. Tang, Synthesis and Characterizatin f Submicrn Silicn Carbide Pwders with Silicn and Phenlic Resin, Pwder Technlgy, 169 71-6 (006). 1. H.P. Martin, R. Ecke, and E. Müller, Synthesis f Nancrystalline Silicn Carbide Pwder by Carbthermal Reductin, J. Eur. Ceram. Sc., 181737-174 (1998).. K.D. Vladimir and Kastic, Prductin f Fine High-purity Beta Silicn Carbide Pwder, J. Am. Ceram. Sc., 75 [1] 170-74 (199). w wz