92-07.fm

Similar documents
12.077~081(A12_이종국).fm

129.fm

93-66.fm

( )-103.fm

6.fm

(1)-01(정용식).fm

16(5)-03(56).fm

17.fm

7.fm

14.fm

fm

( )-41.fm

46.fm

< D B9DABBF3C8AF29BABCB5E52E666D>

48.fm

43(5)-11.fm

132.fm

( )-47.fm

( )★56.fm

17.fm

( )-84.fm

16(5)-02(57).fm

16(5)-04(61).fm

( )-25.fm

18.fm

( )-40.fm

9(1) 이채현.fm

10.fm

( )-68.fm

( )-70.fm

17(1)-06.fm

( )67(홍성현).fm

untitled

( )34.fm

( )-124.fm

fm

°ø±â¾Ð±â±â

104.fm

( )-86.fm

04.fm

17(1)-05.fm

93.fm

(153번 김철영).fm

76.fm

88.fm

114-01(07-19).fm

( )-119.fm

31.fm

139.fm

( )-95.fm

( )-93.fm

( )43.fm

35.fm

45.fm

85.fm

fm

3.fm

115.fm

44(1)-01(이기안).fm

( )-121.fm

( )-106.fm

( )-129.fm

국9409.fm

(154번 김사라은경).fm

44.fm

( )-103.fm

58.fm

( )41.fm

19(1) 02.fm

( )-100.fm

106.fm

fm

( )-112.fm

47.fm

hapter_ i i 8 // // 8 8 J i 9K i? 9 i > A i A i 8 8 KW i i i W hapter_ a x y x y x y a /()/()=[W] b a b // // // x x L A r L A A L L A G // // // // /

fm

( )-74.fm

43-5.fm

20(1) fm

( )-59.fm

( )82(박상환).fm

50.fm

10(3)-10.fm

( )-123.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

65.fm

45.fm

51.fm

( )57.fm

한 fm

fm

58.fm

( )-97.fm

fm

fm

( )-30.fm

( )80(배흥택).fm

10.063~070(B04_윤성식).fm

( )42.fm

8.fm

Transcription:

Bimaterials Research (2005) 9(2) : 107-112 Bimaterials Research 7 The Krean Sciety fr Bimaterials Hydrxyapatite TiNx w Fabricatin f Cmpsites Materials f Hydrxyapatite and TiNx ½ 1 *Á«1 Á 1 Á y 1 Á 1 Á 1 Á 2 ÁJ. F. Schackelfrd 3 ÁZ. A. Munir 3 Sungjin Kim 1 *, Wnil Gwn 1, Sungbum Park 1, Yung Hwan Oh 1, Kyeng-Sik Ch 1, N-Jin Park 1, D En Park 2, J. F.G Shackelfrd 3, and Z. A. Munir 3 1 Š g Š, 2 d}(j) 3 Dept. f Chemical Engineering and Materials Science, University f Califrnia at Davis, Davis CA 95616, USA 1 Department f Materials Science and Metallurgical Engineering, Kumh Natinal Institute f Technlgy. 1 Yangh-Dng, Gumi, Gyengbuk 730-701, Krea 2 Research Center, NAWOO Tech, Crpratiin. 168-14 Simi-Dng, Gumi, Gyengbuk 730-340, Krea 3 Department f Chemical Engineering and Materials Science, University f Califrnia at Davis, Davis CA 95616, USA (Received April 15, 2005/Accepted May 19, 2005) The cmpsites f hydrxyapatite-tinx were prepared using a spark plasma sintering(sps) apparatus. Density f hydrxyapatite-1%tinx cmpsite was decreased with increasing cntent f TiNx in rder f 0.1%, 05% and 1.0% but density f hydrxyapatite-1%~10%tinx cmpsite was increased with increasing cntent f TiNx inrder f 1%, 5% and 10%. The maximum biaxial strength f hydrxyapatite and TiNx f cmpsites was achieved by SPS with a cmpsitin f 0.1% TiNx at 900 C. The decmpsitin f cmpsites hydrxyapatite and TiNx cmpsites were nt detected by XRD at the range f 900 C t 1100 C, this means the decmpsitin f hydrxyapatite was restrained easily by additin f TiNx. Key wrds: Hydrxyapatite, TiNx, Cmpsites, Spark plasma sintering, Decmpsitin Œ ~fƒ(hydrxyapatite: f HAp ) f tf x f j i i fš, t xœ f f, t f Œ Š t Œ f f til Š Šf f f nan Œ~, t, e l z Š d f. 1-4) HAp x tf f f h lf f f e t Œ fff f., HAp tf v i Š 15~165 MPa h Š ~ f. 5,6) f f HApf tf Œ e, i hš Œ fff Š, e f ŒŠi i f d Š fdš f ~ f. f Š f hš rf ~ df j i f d f f l HAp Š Š f lf f Œ d hf l f. f Š Š f fš hš HAp f ŒdŠ e Š Šjf l e hhš Œ~f f ƒ fš, g, Œf e z *sf hf: sjghim@empal.cm g hiš d f. f Š hf Š eš g f ŠŒ Š h ƒ f f lš ff ŠŒ t e l z, -l z, f Œ ~, ~, lœ ~ f f. 7-11) t e j l z t Š d, f d t Š f f x f f f d f Š dœ f f ff, f Œ ~ ~ f t Š d Štf ~ f hšš Œ f Œ f f f. 12,13) ƒ ~ f h f ƒdf d hf tg h f, hf ƒ d Š lf Œ f Œ t f f l d Š gf t f x f v f j f ghf l f d Št hidf f f f lš f. 14-16) h Š f j f HApf Š t f Œ fš i f f f lš eš h j l e Š l e j s fš ~ tf 107

108 lá efá Á ŒÁi Á lá ÁJ. F. SchackelfrdÁZ. A. Munir f lœ ~ Š tf Š Œ Œ lš lš f. 11,17,18) ~ f Š bwl, ~ ballf v lœ ff f l ~ f planetary millf fdš milling e i f ihš TiNxf hiš f, f l TiNxf milling t ~ f j f millingf lš ~ f ef j TiNxf ef l Š, f l ~ f ŠeŠ TiNx Nf hš ~ l ff HApf Š lš f Nf Š Š fš l f 18) f hf x TiNx HAp Št hiš f Š f ~ i e TiNxf t f t f Š eš 0.01~1.00% lf t i ef Št hiš, f hf Štf ŒŠf xf f i ef 5%, 10%f TiNxf t Š Št hiš Œ Š. Š f Š HApf Š h l Š f Š e Š h gx fdš tf f f h fš l Œ Š t d ~ e 19-21) f fdš } l (spark plasma sintering:sps) fdš ŠŠ f u Š tf i Š tg f f elš Š. f HAp TiNxf Š t t TiNx Štf x t i Š, ƒ f Š. d e HAp(calcium phsphate tribasic, Alfa Aesar, USA) x Š f 34~40% ef, TiNx hid ~ (High Purity Chemicals, Japan)f 99.9%f f 45 µmf f dš f, planetary miling i f Si3N4 bwl 9mmÅf x f ball Š ~ f ŒŠŠ, 400 rpmf f Š hiš f, XRD xf Šd 5, 10, 20 f hiš. f l TiNx f HAp Š 0.01, 0.1, 0.5, 1.00, 5.00, 10.00wt% f e ŒŠŠ 30 ball milling Š ŒŠŠ dry venf fdš 80 C 8 iš d j Š. w i f ŒŠ f l f 30 mmf hwš, SPS(Dr. Sinter 1050, Sumitm Cal Mining C. Ltd., Japan) g dš hiš. } l f Table 1 ~ f 7 Mpaf Š Table 1. Sintering cnditins f spark plasma sintering Sintering apparatus SPS(Dr Sinter 1050, Japan) Sintering temperature Saking time Heating rate Atmsphere Applied pressure Ar-4%H 2 ŒŠ e 200 C/minf 900~1,100 Cf u 5 Š f ~ i f ŠŠ. hiš f whš vš hf f hœš vf Šf whš f Š. h f X- h (Mdel D5005, Bruker, Karlsruhe, Germany)f Š TiNx f f Š whš. whf CKÅ f fdš Schulz f fdš, h f 40 KV, h 30 maf f 2θ= 20-120 e 0.02 0.8t elš i f ŠŠ. l TiNx Štf i FESEM(JSM-6500F, JEOL, Japan)f fdš rš f TiNxf Œ HAp Št jf TiNxf f EDX(Energy Dispersive X-ray Spectrscpy : Inca, Oxfrd) fdš whš. Štf micr Vickers f} wh (Mdel-7, MATSUZAWA, Japan) whš, whf Instrn(Mdel 4468, Instrn Crpratin, U.S.A.)f fdš 0.5 mm/minf f fv (biaxial strength test)f whš. 23) š 900~1100 C 5 min 200 C/min Ar-4%H 2 mixed gas 7 MPa TiNx XRD Figure 1 planetary milling fš hi ~ f XRD ~ f Si 3 N 4 bwl 9mmϕf x f ball Š ~ f ŒŠŠ, 400 rpmf i milling f Œ z whš f, XRD wh milling t TiN 0.26f ŒŠ h ŒŠ f Œ fš 5 f milling s TiNf Œ fff ff, 20 f TiN0.26f h peak Š TiNf peakf } Šf f f, fšf Št t Š TiNx TiN 0.26 TiNf Œg 5 hr planetary millingš hiš f jf dš. w Figure 2 f TiNx HAp Štf Œ f TiNxf i Œ Š f t e 0.01% 10% fš hšš TiNx t Bimaterials Research 2005

Hydrxyapatite TiNxf Štf hi 109 Figure 1. XRD patterns f pure Ti and TiNx pwder milled fr different times. Figure 2. Density variatin with TiNx cntents f hydrxyapatite-tinx cmpsites by spark plasma sintering. Š Œ Š f. f i Š HAp Š Œ 900 C f 1.53, 1000 C f 1.74, 1100 C f 2.26f Š Š, 12) 900 C 1000 C l Š 25%f l ~ l, 1000 C 1100 C l Š 16%f f ff, f 1100 C f f f CaO f Š lš Š f w f f. TiNx t d i f l Š l Š f ~ f, ƒ 0.01%t f d HApf Š 900 C 50%f l ~ f 1000 C 30%f l Š f ~. ƒ, TiNxf 0.01% t Š 1100 C Š g ~. f TiNxf f t ih f Šf Š TiNxf HApf tf h h f l Š HApf Š hš ff fdš f w. 0.01%-1%i ef TiNxf t Š HAp TiNx Štf Œ Š 0.01% 1% Štjf TiNxf f l Š Š f ~ f f TiNx f t l Š f f Š f g TiNxf } nan size f fif f nan sizef TiNx t Œ f fš f f wš f lš Š f. 1%, 5% 10%f TiNxf t Š HAp TiNx Štf Œ Š 1% 5%, 10% Štjf TiNxf f l Š l Š f ~ f f Štf Œ Šg f ŒŠf xf ff f f, f HAp ~ f 25% f f ŠeŠ g f l ~ f l Š 12) f fxš f ~. w XRD Figure 3f HAp-1.0%f TiNx Štf X- h f j ff, Štf XRD f HAp f t f XRD f h f 1100 C f d HApf peakf f Š f hdš f f f fš XRD f j f ff ff, ~ f t Š HAp-Ti Št 1000 C ~ CaO peakf, 1100 C ~ CaTiO4f 12)f peak ~ l f ff, f TiNxf t fš HApf Š f Š j f f., Figure 4 f HAp-10.0% TiNx Štf X- h 3x f (tricalcium phsphate: TCP)f peak ~Š f HAp Š f ff, f f TiNxf t Š d TCPf Œ f Šf Š fff Š, Figure 3. XRD patterns f hydrxyapatite-1.0% TiNx at varius sintering temperatures. Vl. 9, N. 2

110 lá efá Á ŒÁi Á lá ÁJ. F. SchackelfrdÁZ. A. Munir Figure 4. XRD patterns f hydrxyapatite-10.0% TiNx at varius sintering temperatures. f 1100 C f Š fv f Œ f ff f. w x Figure 5 TiNx HAp Štf biaxial strengthf Œ f TiNf i Œ Š f, ƒ 1100 C TiNxf Š f 0.5%f f t d t f f biaxial strength whš. f 1100 C f f f CaO f Š lš Š f e Š f f CaOf fš f lh fš Š f } f f w. ƒ biaxial strengthf Œ f TiNxf i Œ Š Š 900 C 1000 Cf TiNxf t f 0.1% f t biaxial strengthf l Š ff f f, 900 C Figure 5. Biaxial strengths variatin with varius sintering temperatures and TiNx cntents f hydrxyapatite-tinx cmpsites. 0.1% u f ~ f f HAp Š 50% l Š f 1000 C 0.1% u f ~ f f HAp Š 25% l Š f ~ f f. f f ŒŠ i f 11) Œ ~fƒ 900 C f (OH)- f f~ fš ~ ff f 1150 C f 3x f f TCP(tricalcium phsphate), CaO H 2 O Š f h f ŒŠ i f Œ ~fƒf h Œ ~, vš Š i gš f lš f hf f 25-27) f TiNxf t HAp Š fš TCPf h f ~ l f CaO f Š f f l f. f f h Š f f TiNxf t fš HApf Š hš f l ff TiNxf t f HAp Š hf j h TCP f Š CaO f Š hf f l f f. 0.5% Š 1%, 5%,10% TiNx f t fš 1000 C fšf d l Š f Œf Š f f f TCPv f HApf Š f hš 5%, 10%f TiNx f t fš Štf l f x rule f mixturef } fdš f f. 1100 C f d TiNx 0.1% t Š Š 0.5%f f t l Šl HAp TiNxf Št f biaxial strength whš. f HAp TiNx t d ih fdš v l Š f ~ l, 1100 Ch f f HAp t TiNx TCP Œ tl Š CaOf Štl fš f f tlš ff fdš f vh. w Figure 6f TiNx f 1.0% 10% t HAp-TiNx Štf biaxial strenth f f FESEMf i Š, hthf fff } 10%f TiNx t f d } ~ f f TiNxf t ih f Šf Š f f j f. l TiNx 1.0% t Štf d 150~250 nm e f HAp ff 200~300 nm f f i l fff ff, TiNx 10% t Štf d 250~300 nm ef HAp ff 250~350 nm f f i l fff f. f Šjf 7 Mpa j h j tf ef } Š fš f, f f f f biaxial strength f f ~ dff fdš fff j f. Bimaterials Research 2005

와 TiNx의 복합체의 제조 Hydrxyapatite 111 HAp-1.0%TiNx보다 더 큰 결정립을 보여주는 것으로 TiNx가 소결조제로서의 역할을 하고 있다는 것을 의미한다. 4. HAp-TiNx 복합체의 X-선 회절 패턴을 분석한 결과, 거 의 소결 온도에 관계없이 순 HAp만의 소결체의 XRD 패턴과 유사한 XRD 패턴을 보여주고 있으며, TiNx의 첨가에 의해 HAp의 분해 현상이 줄어든 것으로 예측된다. 5. TiNx의 첨가량이 1% 이하의 경우에서는 XRD 패턴은 거 의 같고 HAp의 분해현상은 없었지만, 5% 및 10%의 TiNx가 첨가 된 복합체의 경우는 XRD 분석결과 TCP peak이 관찰되 므로 다량의 TiNx첨가에 의해 HAp가 쉽게 분해 되고 있다는 것을 알 수 있었다. 감사의 글 본 연구는 2003년도 금오공과대학교 학술연구비 지원에 의 하여 연구된 논문으로, 이에 감사드립니다. 참고문헌 1. P. Van Landuyt, F. Li, J. P. Keustermans, J. M. Streydi, F. Delannay, and E. Munting, J. Mater. Sci.: Mater. Med.,, 8-13 (1995). 2. Y. W. Gu, K. A. Khr, and P. Cheang, Bne-like apatite layer frmatin n hydrxyapatite prepared by spark plasma sintering (SPS), Bimaterials,, 18-24 (2004). 3. H. Li, K. A. Khr, and P. Cheang, Impact frmatin and micrstructure characterizatin f thermal sprayed hydrxyapatite/titania cmpsite catings, Bimaterials,, 6-13 (2003). 4. I. Manjubala and T. S. S. Kumar, Bimaterials,, 1995-2002 (2000). 5. V. J. P. Lim, K.A. Khr, L. Fu, and P. Cheang, J. Mater. Prc. Tech.,, 491-499 (2000). 6. P. Van Landuyt, F. Li, J. P. Keustermans, J. M. Streydi. F. Delannay, and E. Munting, J. Mater. Sci.: Mater. Med.,, 8-13 (1995). 7. M. Jarch, C. H. Blen, M. B. Trmas, J. Bblck, J. E. Kay, and R. H. Dremus, J. Mater. Sci.,, 2027-2032 (1976). 8. H. Aki, Medical applicatins f hydrxyapatite, A. Ishiyaku (Ed.), EurAmerican, Inc., 1994, pp. 31. 9. 신미정, 김도균, 김교한, 인산과 칼슘 이온을 함유한 수용액 중에 서의 타이타늄 표면처리, Kr. J. Mater. Res.,, 352-358 (1998). 10. L. L. Hench and J. Wilsn, Biceramics, MRS Bull., September, 1991, pp. 62. 11. 김성진, 조경식, 박노진, 수산화아파타이트와 지르코니아의 경사 기능 재료의 제조, 한국결정성장학회지, 115-119 (2001). 12. 김성진, 박도언, 권원일, 루스탐, 이종홍, 오영환, 조경식, 박노진, 안중호, Hydrxyapatite와 nan-sized TiN 복합재료의 제조 및 기 계적 특성, Bimaterials Research,, 125-130 (2004). 13. 김성진, 박지환, 조경식, 박노진, Hydrxyapatite와 titanium의 경 사기능재료의 제조, 한국결정성장학회지,, 144-148 (2002). 14. P. Li, I. Kangasniemi, and K. de Grt, J. Am. Ceram. Sc.,, 1307-1312 (1994). 15. A. C. Bent, D. P. Almnd, S. R. Brun and I. G. Tumer, Thermal and ptical characterizatin f calcium phsphate bimaterials hydrxyaptit, J. Appl. Physi.,, 6848-6853 (1996). 6 25 24 Figure 6. FESEM mrphlgy f hydrxyapatite and TiNx cmpsites. 결 론 19 수산화아파타이트에 0.01%-10% 조성범위의 TiNx을 첨가하 여 혼합체를 스파크 플라즈마 소결(SPS)법으로 제조하여 소결 밀도, XRD분석, 미세구조 및 biaxial strength의 특성분석을 통하여 다음과 같은 결론을 얻었다. 1. HAp-TiNx복합체의 경우, 1% 이하의 TiNx를 미량 첨가 할 경우 0.01%, 0.1%, 0.5%, 1.0%로 TiNx의 함량이 증가할 수록 밀도가 감소하는 것으로 나타났으며, 반면에 TiNx을 1%10%의 범위에서 첨가할 경우 1%, 5%,10%로 TiNx의 함량이 증가할수록 소결체의 밀도가 증가하는 것으로 나타났다. 2. biaxial strength의 변화를 소결 온도와 미량의 TiNx의 조성 변화에 대해 비교해본 결과, 900 C에서는 0.1%에서 최 대강도 값이 나타났으나 1100 C에서도 TiNx가 0.1%이상이 첨가되면 소결 시편에 균열이 형성되어 biaxial strength 값을 측정할 수 없을 정도의 취성을 나타냈다. 3. HAp-10%TiNx 복합체의 미세구조는 250~300 nm 범 위의 HAp 입자와 250~350 nm급의 연결된 기공으로 구성되 어 있었으며, 입자 크기를 비교하면 HAp-10%TiNx 복합체가 21 6 11 8 11, 8(2) 12(3) 77(5) 79(9) Vl. 9, N. 2

112 lá efá Á ŒÁi Á lá ÁJ. F. SchackelfrdÁZ. A. Munir 16. l, f Œ, td g, Bimaterials Research, 3, 28-33 (1999). 17. j, h, ~, h h Š Œ f h iš Œ ~fƒ/ Tif h h l, J. Kr. Inst. f Met. & Mater., 34, 569-578 (1996). 18. P. Ducheyne. S. Radin, M. Heughebaert, and J. C. Heughebaert: Calcium phsphate ceramic catings n metallic prus surfaces. the effect f structure and cmpsitin n the electrphretic depsitin, vacuum sintering, and in vitr disslutin, Bimaterials, 11, 244-254 (1990). 19. J. Weng, X. Liu, X. Zhang, and X. Ji, Thermal Decmpsitin f Hydrxyapatite Structure Induced by Titanium and Its Dixide, J. Mater. Sci. Lett., 13, 159-162 (1994). 20. M. Tkita, Trend in advanced SPS spark plasma sintering systems and technlgy, J. Pwder Tech. Japan, 30, 790-796 (1993). 21. G. C. Wei and J. Walsh, U. S. Patent 5,342,564 (1992). 22. S.-J. Kim, J.-H. Park, K.-S. Ch, J. F. Schakelfrd, and Z. A. Munir, Influence f zircnia particle size n micrstructure and mechanical prperties f hydrxyapatite - zircnia cmpsites, The Secnd Japan - Krea SPS Frum, Okinawa, Japan, B4 (2001). 23. J. E. O. Ovri, A parametric study f the biaxial strength test fr brittle materials, Mater. Chem. Phy., 66, 1-5 (2000). 24. S. E. Park, J. H. Lee and H. L. Lee, Determinatin f the biaxial strength by ball-n-3-ball Test, J. Kr. Ceram. Sc., 36, 225-230 (1999). 25. J. Cihlar, A. Bachal, and M. Trunec, Kinetics f thermal decmpsitin f hydrapatite biceramics, J. Mater. Sci., 34, 6121-6128 (1999). 26. T. Kijima and M. Tsutsumi, J. Am. Ceram. Sc., 62, 455-461 (1979). 27. G. R. Fischer, P. Bardhan, and J. E. Geiger, J. Mater. Sci. Lett., 2, 577-578 (1983). Bimaterials Research 2005