Jurnal f the Krean Ceramic Sciety Vl. 51, N. 4, pp. 271~277, 2014. http://dx.di.rg/10.4191/kcers.2014.51.4.271 BaCeO 3 -BaZrO 3 Slid Slutin (BCZY) as a High Perfrmance Electrlyte f Prtnic Ceramic Fuel Cells (PCFCs) Hyegsn An*, **, Dngwk Shin***, Sung Min Chi*, ****, Jng-H Lee*, Ji-Wn Sn*, Byung-Kk Kim*, Hae June Je*, Hae-Wen Lee*, and Kyung Jng Yn*, *High-Temperature Energy Materials Center, Krea Institute f Science and Technlgy, Seul 136-791, Krea **Department f Fuel Cells and Hydrgen Technlgy, Hanyang University, Seul 133-791, Krea ***Divisin f Material Science and Engineering, Hanyang University, Seul 133-791, Krea ****Department f Materials Science & Engineering, Krea University, Seul 136-713, Krea (Received June 13, 2014; Revised July 14, 2014; Accepted July 15, 2014) BaCeO 3 -BaZrO 3 고용체 (BCZY) 기반프로톤세라믹연료전지 (PCFC) 용고성능전해질개발 안혁순 *, ** 신동욱 *** 최성민 *, **** 이종호 * 손지원 * 김병국 * 제해준 * 이해원 * 윤경중 *, * 한국과학기술연구원고온에너지재료연구센터 ** 한양대학교수소연료전지공학과 *** 한양대학교신소재공학과 **** 고려대학교신소재공학과 (2014년 6월 13일접수 ; 2014년 7월 14일수정 ; 2014년 7월 15일채택 ) ABSTRACT T vercme the limitatins f the slid xide fuel cells (SOFCs) due t the high temperature peratin, there has been increasing interest in prtn cnducting fuel cells (PCFCs) fr reductin f the perating temperature t the intermediate temperature range. In present wrk, the pervskite BaCe 0.85-x Zr x Y 0.15 O 3-δ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via slid state reactin (SSR) and adpted as an electrlyte materials fr PCFCs. Pwder characteristics were examined using X-ray diffractin (XRD), thermgravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were btained in all cmpsitins, and chemical stability was imprved with increasing Zr cntent. Ande-supprted cell with Ni-BaCe 0.55 Z 0.3 Y 0.15 O 3-δ (BCZY3) ande, BCZY3 electrlyte and BCZY3-Ba 0.5 Sr 0.5 C 0.8 Fe 0.2 O 3-δ (BSCF) cmpsite cathde was fabricated and electrchemically characterized. Open-circuit vltage (OCV) was 1.05 V, and peak pwer density f 370 (mw/cm 2 ) was achieved at 650 C. Key wrds : Prtn cnductr, Fuel cell, Electrlyte, BZCY, Stability 1. 서론 연료전지는연료가지니고있는화학적에너지를전기에너지로직접변환하는장치로높은변환효율과무소음, 환경친화적인특성들로인해기존의내연기관을대체할미래에너지원중하나로여겨지고있다. 그중에서도고체산화물연료전지 (SOFC, slid xide fuel cell) 는복합발전을통해높은효율을얻을수있고내부개질을통한다양한탄화수소계열연료의사용이가능하며외부시스 Crrespnding authr : Kyung Jng Yn E-mail : kjyn@kist.re.kr Tel : +82-2-958-5515 Fax : +82-2-958-5529 템 (BOP, balance f plant) 이간단하고, 높은구동온도로인해귀금속촉매를사용하지않아도된다는장점을지니고있다. 그러나매우높은작동온도로인한신뢰성저하, 높은소재비용, 열손실, 긴시동시간등의문제점들이 SOFC 의상용화를방해하는요인으로지적되면서이를극복하기위한방안으로 SOFC 의작동온도를중 - 저온영역으로 (400 ~ 600 C) 낮추고자하는노력이기울여지고있다. 1-3) 그중하나가, 수소이온전도체를전해질로사용한수소이온세라믹연료전지 (PCFC, prtnic ceramic fuel cell) 이다. 4-7) 수소이온전도성세라믹은 1980 년대 H. Iwahara 와그의동료에의해최초로보고되었다. 세라믹멤브레 271
272 안혁순 신동욱 최성민 이종호 손지원 김병국 제해준 이해원 윤경중 인내에서의수소이온전도는 SrCeO 3, BaCeO 3, CaZrO 3, SrZrO 3 등 A (2+) B (4+) O 3 의 pervskite 구조를갖는물질들이 중-저온영역대에서수증기와의수화반응을통해 ( OH O ) 기를형성하고이중수소이온이 Grtthuss mechanism에의해이온전도주체로작용하는현상으로알려져있으며 (Eq. 1), 일반적으로수소이온전도체들의수화반응을위하여산소의빈자리가필요하기때문에 10 ~ 20 ml% 의 Y, Yb, In, Nd 등 rare-earth element를일정량치환시킨다 (Eq. 2). 8-11) 수소이온전도체는기존의산소이온전도체보다중-저온영역에서높은전기전도도와낮은활성화에너지를갖고양극에서물이형성되므로연료희석이방지되는등의장점을갖는다. X H 2 Og ( ) + V O + O O 2OH O X 2Ce Ce O X + O + M 2 O 3 2M Ce + V O +2CeO 2 (1) (2) 수소이온전도체들중가장많이연구되는물질은 Y-dped BaCeO 3 (BCY) 이다. BCY 는 400 C 에서 0.01(S/cm 2 ) 의높은수소이온전도도를보이지만 CO 2 및 H 2 O 와의반응 (Eq. 3) 으로인한안정성의문제때문에 PCFC 전해질로서의적용이제한되고있다. 12-14) BaCeO 3 + CO 2 BaCeO 3 + CeO 2 반면, 같은 Ba 계 Pervsktie-structured 물질로화학적안정성이뛰어난 Y-dped BaZrO 3 (BZY) 가있으나전기전도도가낮고입계저항이크며소결이어렵다는단점을갖는다. 또한, 높은소결온도로인한 Ba 의휘발및상분리는전기전도도의감소를초래하기때문에현실적으로사용이어려운상황이다. 3,4,15) 최근, BCY 에 Zr 을일정량치환한 BaCeO 3 -BaZrO 3 고용체 (BCZY) 가 PCFC 의전해질로보고되고있다. 16-24) BCZY 는치환된 Zr 양이증가함에따라 CO 2 및 H 2 O 분위기에서의화학적안정성이증가하고전기전도도가감소하는것으로보고되고있으며, 화학적안정성과전기전도도사이에적절한균형을갖는조성을선택할경우유망한수소이온전도체로사용할수있을것으로기대되고있다. 일반적으로 slutin 합성법을이용한 BCZY 의특성평가및연료전지성능등이보고되고있으나, 이러한합성법을이용할경우 Ba 이부족한 BCZY 가만들어질수있다는결과가지속적으로보고됨에따라신뢰성있는전해질합성방법에대한연구의필요성이대두되고있다. 25-27) 또한, 고상합성법으로합성된 BCZY 분말을이용하여셀을제조하고그특성을평가한보고는부족한실정이다. 28,29) 본연구에서는고상합성법을이용하여전해질분말을합성한뒤화학적안정성을평가하였고, 그결과를바탕 (3) 으로화학적으로안정한최적의전해질조성을선정하였다. 이를전해질로사용하여음극지지형셀을제조및평가함으로써 PCFC 용신규전해질소재의적용가능성을평가하였다. 2. 실험방법 2.1. 분말합성 BaCe 0.85-x Zr x Y 0.15 O 3-δ (x = 0.1, 0.3, 0.5, 0.7) 분말은일반적인고상합성법을통하여 Fig. 1와같은순서로만들어졌으며, 치환되는 Zr 조성에따라각각 BCZY1, BCZY3, BCZY5, BCZY7 (x = 0.1, 0.3, 0.5, 0.7) 로명명하였다. 분말합성을위하여 BaCO 3 (Cerac, USA, 99.99%), CeO 2 (High purity chemicals, Japan 99.99%), ZrO 2 (Tsh, Japan), Y 2 O 3 (High purity chemical, Japan 99.99%) 가시작물질로사용되었다. 200 C 오븐에서 24 시간동안건조된분말을조성에맞는적절한비율로에탄올과함께 24 시간동안섞은뒤 80 C 오븐에서건조시켰다. 건조된분말은 10 MPa 압력을가해지름 45 mm의성형체로만들었으며, ZrO 2 도가니를사용하여 1300 C 5 시간동안하소하였다. 이어서하소를마친분말은유발한뒤 milling 하여다시성형체로만들고 1400 C 15 시간동안하소하였다. 마지막으로얻어진분말은 48 시간동안 milling하였고 150 μm 체에걸렀다. Fig. 1. BaCe 0.85-x Zr x Y 0.15 O 3-δ (BCZY) synthesis flwchart. 한국세라믹학회지
BaCeO 3 -BaZrO 3 고용체 (BCZY) 기반프로톤세라믹연료전지 (PCFC) 용고성능전해질개발 273 2.2. 분말특성평가 BCZY 의소결거동을살펴보기위하여 20 7 7 mm bar 샘플을냉간정수압성형을 (CIP, cld isstatic press) 이용하여 250 MPa 의압력으로성형한뒤 1700 C 10 시간동안소결하였다. 소결체의밀도는아르키메데스법을사용하여측정하였으며단면 SEM 을사용해결정립크기의경향성을확인하였다. 소결체는분쇄한뒤분말 X-ray diffractin(rigaku D MAX 2500 diffractmeter) 을사용하여 20 부터 80 까지 0.01 간격으로측정하였으며측정속도는 1 /min 이었다. 얻어진 X-ray diffractin 결과를이용하여 JADE 9.0 프로그램을통해격자상수및이론밀도를구하였다. 화학적안정성을평가하기위해서 TGA(Therm-gravimetric analysis) 분석을실시하였다 (SATARAM SETSYS Evlutin S60, France). 하소한분말을 Pt 도가니에넣어고순도공기분위기에서 5 C/min 속도로 25 C 에서 1200 C 까지가열한뒤 100% CO 2 로 30 분동안유지한후온도를하강하며무게변화를측정하였다. 측정된분말을이용하여 X-ray diffractin 을통해무게변화에영향을준물질을확인하였다. 분말의표면적은 BET(Brunauer, Emmett and Teller) 를이용하여확인하였으며 (Quantachrme Quadrasrb SI surface area analyzer) 소결체및셀의표면형상은 SEM(Scanning Electrn Micrscpe, XL-30 FEG, FEI) 을사용하여관찰하였다. 2.3. BCZY 셀제작및평가 BCZY3 셀제작은일반적인음극지지형 SOFC 공정인동시소결법을사용하였다. 음극은 NiO(Sumitm, Japan) 와 BCZY3 을 4:6 부피비로섞어분무건조법을 (Yamat-GB22, Japan) 통하여과립화하였으며, 30% 부피비의 PMMA(ply methyl methacrylate, 5 μm) 를넣어음극의기공율을확보하였다. 건조된과립은체에걸러 45 ~ 150 μm 크기를사용하였으며 80 80 mm 정사각형형태로 60 Mpa 의압력에서 2 분간성형하였다. 성형된음극에는일반적인스크린프린팅공정을이용하여전해질막을형성하였고 1350 C 에서 4 시간동안소결하였다. 소결체는 20 20 mm 크기로잘라낸뒤 10 10mm 크기의 BCZY3-BSCF(Ba 0.5 Sr 0.5 C 0.8 Fe 0.2 O 3-δ, AGC SEIMI chemical. C.) 양극기능층과 BSCF 집전층을스크린프린팅으로형성하고 850 C 2 시간동안열처리하였다. 성능평가를위해 200 sccm 의 H 2 (3% H 2 O) 와공기를각각음극과양극에공급하였고, 650 ~ 550 C 온도범위에서 slatrn1287 과 slatratrn1260 을이용하여전기화학적성능을측정하였다. 은하소온도가 (1300 ~ 1400 C) 필요하기때문에, 화학적으로안정한 ZrO 2 도가니를사용하여 pwder bed 형태로하소하였다. 특히, BCY의경우 1400 C 이상에서 Al 2 O 3 와반응이보고되고있으며 BCZY의경우에는 Pt 도가니를사용했을경우에도 Pt 확산에의한변색이일어나는현상이보고되고있다. 18) 분말 X-ray diffractin 결과고상합성법을이용하여만들어진 BCZY 분말은두번의하소단계를거친이후에단일상을나타내었으며, 최근보고된 1400 C 24 h 하소조건의경우 BCZY7에잔여상이남아있는문제가발생하였다. 22,23) 또한, Zr양이적을수록낮은온도및짧은유지시간안에합성되는것을확인할수있었다. 소결된 BCZY는모두높은소결밀도 (> 95%) 를갖고있었으며 Zr 양이증가할수록밀도가감소하는경향을보였고, 단면 SEM 이미지관찰결과 Zr양이증가함에따라결정립크기가작아지는것을확인할수있었다 (Fig. 2). 20,22) Fig. 3는소결된 BCZY의분말 X-ray diffractin 결과이다. Zr양이증가함에따라 XRD pattern이오른쪽으로움직이는것을볼수있는데, 이는셀부피가줄어든것을의미한다. 이는 Zr(0.72 Å) 이 Ce(0.87Å) 자리를치환할때이온크기의차이에의해발생하는현상으로 BCZY1의경우 mncline에가까웠으나 BCZY7의경우 cubic에가까웠다. JADE 9.0 프로그램을사용하여격자상수및셀부피를구한결과가표에정리되어있다 (Table 1). Pervskite-structured 물질이 cubic 구조와얼마나가까운지는 Gldschmidt tlerancefactr (t) 를통해서도설명할수있다 (Eq. 4). r t A + r = ------------------------ O (4) 2r ( B + r O ) BCZY의각조성별 (t) 값을구해보면 Zr 조성이증가 3. 결과및고찰 3.1. 분말특성고상합성법으로 BCZY 분말을제조할경우비교적높 Fig. 2. Crss sectin SEM micrgraph f BaCe 0.85-x Zr x Y 0.15 O 3-δ (BCZY) sintered at 1700 C. 제 51 권제 4 호 (2014)
274 안혁순 신동욱 최성민 이종호 손지원 김병국 제해준 이해원 윤경중 Fig. 3. Pwder X-ray diffractin results f BaCe 0.85-x Zr x Y 0.15 O 3-δ (BCZY) sintered at 1700 C. Table 1. Pwder Characteristics f BaCe 0.85-x Zr x Y 0.15 O 3-δ (BCZY) Synthesized by Slid State Reactin (SSR) Methd Cmpsitin Tlerance factr (t) Pseud-cubic lattice parameter (Å) Cell vlume (Å 3 ) Theretical density (g/cm 3 ) Relative density (%) BCZY1 0.8606 4.37473 83.7247 6.2076 96.17 BCZY3 0.8722 4.33943 81.7143 6.1615 97.81 BCZY5 0.8841 4.29488 79.2233 6.1502 95.47 BCZY7 0.8963 4.25629 77.1070 6.1083 96.24 Table 2. BET Surface Area Analysis f BaCe 0.85-x Zr x Y 0.15 O 3-δ (BCZY) After Calcinatins BCZY1 BCZY3 BCZY5 BCZY7 BET(m 2 /g) 6.773 11.763 12.438 13.258 했을경우 (t) 값이 1 에가까운것을알수있다 (BCZY7 (0.8963)>BCZY1(0.8606)). 위의식에서 (t) 는 Gldschmidt tlerance factr, r A 는 A(2+), r B 는 B(4+), r O 는 Oxygen 각각의 inic radius 를나타내고, (t) 값이 1 일경우완전한 cubic 이다. 또한이를통해 Zr 치환량이증가할수록화학적안정성이증가할것으로예상할수있다. 30,31) 3.2. BCZY 의화학적안정성평가화학적안정성을측정함에앞서 BCZY 의표면적을 BET 를사용하여측정하였다 (Table 2). 측정에앞서분말들을 200 C 의진공분위기에 24 시간동안유지하여표면의수분및유기물을제거하였고고순도질소를흡착제로사용하여 7 포인트씩측정하였다. 측정결과 BCZY 는 Zr 양이증가함에따라분말의표면적이증가하는경향을보였으며이는 Y. GuO 의결과와일치한다. 21) Fig. 4(a) 는 100% CO 2 분위기에서 BCZY 의화학적안정성을평가한결과이고 (b) 의 X-ray diffractin 결과는 TG 측정후의분말에서얻어진것이다. 표면에흡착된수분및유기물을제거하고 CO 2 와의반응을억제하기위하여고순도공기를사용하여가열한뒤하강하며화학적안정성을확인하였다. BCY 의경우중저온의 CO 2 및 H 2 O 분위기에서 BaCO 3 로분해된다고보고되고있으나, 비교적적은양의 Zr 이치환된 BCZY1 의경우도 10% 가넘는무게증가를보였다. 또한, 보고되는바와같이 (Zr > 0.5) BCZY5 조성부터는눈에띄는무게변화를찾아볼수없었으며분말 X-ray diffractin 에서는 BCZY3 조성도큰변화를보이지않았다. 16,18-22,32) TG 결과를보면 Zr 양이증가함에따라무게변화의폭이감소하는것뿐만아니라반응이일어나는온도도저온영역으로이동하는것을확인할수있는데, 이는 Y. GuO 의 CO 2 -TPD(CO 2 -temperature prgrammed desrptin) 를통해서도보고된현상이다. 그의보고에의하면 BCZY 는저온영역에서의반응과 (α) 고온영역에서의반응 (β) 이존재하며, 600 C 부근의 α peak 의경우단순히 CO 2 가 BCZY 표면에흡착및탈착에되는반응에의한것이고, 800 ~ 930 C 부근의 β peak 의경우 CO 2 와 Ba 의반응에의한 BaCO 3 형성으로설명하고있으며 Zr 양이증가함에따라 β peak 이사라지는경향을보였다. 따라서, 위의 TG 결과는문헌과매우잘일치하는것을확인할수있다. 21) 100% CO 2 분위기에서의화학적안정성은실제 PCFC 구동조건보다가혹한조건이기때문에약간의반응을감안한다면 BCZY3 조성부터는 PCFC 전해질로사용할수있을것으로판단된다. 3.3. 셀성능및특성평가치환된 Zr 양이증가함에따라 BCZY 의화학적안정성은증가하지만, 전기전도도는낮아질것으로예상되기때문에 BCZY3 조성을선택하여셀을제작하였다. 일반 한국세라믹학회지
BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발 275 Fig. 4. (a) Therm gravimetric results f BaCe0.85-xZrxY0.15O3-δ (BCZY) in 100% CO2 and (b) pwer X-ray diffractin results after TGA test. 적으로 BCZY5 이상의 Zr을 함유한 조성은 화학적 안정 성은 뛰어나나 소결도가 떨어지기 때문에 음극 지지형 SOFC 공정을 사용하여 치밀한 전해질을 얻기 위해서 1450C 이상의 온도에서 소결하는데, 높은 소결 온도로 인한 Ba 휘발 및 음극 기공구조에 문제가 생길 것으로 예상되기 때문에 공정 편의성 측면에서도 BCZY3을 선택 하는 것이 가장 적합하다고 판단하였다. Fig. 5의 SEM 이미지 분석 결과 제작된 셀의 음극 지 지체의 두께는 900 μm, 음극 기능 층은 20 μm, BCZY3 전해질층은 7 μm으로 확인 되었으며, BSCF-BCZY3 양극 기능층 및 BSCF 양극 집전층의 두께는 각각 20 μm로 확 인되었다. 치밀한 전해질 구조 및 결정립 크기로 미루어 볼 때, 음극 수축으로 인한 소결촉진 외에 음극 내 NiO 가 소결조제로 작용 했을 가능성이 존재한다. 실제로, BZY 을 전해질로 사용하여 Aut-cmbustin 방법으로 만들어 진 음극을 동시 소결한 경우와 소결된 음극에 분사법으 로 BCZY 전해질을 증착하여 소결한 경우 전해질 내 NiO 33,34) 확산을 보고한 결과들이 존재한다. Fig. 6의 I-V 곡선으로부터 650 C, 600 C, 550 C에서 각 각 1.05(Vlts), 1.09(Vlts), 1.13(Vlts)의 OCV를 확인할 수 있는데, 이는 전해질이 치밀하고 가스 누설이 존재하 지 않음을 의미한다. 양극으로 사용된 BSCF의 경우 중-저온 영역에서 높은 산소이온 전도도를 갖는 우수한 SOFC의 양극물질로서 알 려져 있다. 현재 PCFC의 양극으로 사용 할 수 있는 수소 이온-전자 혼합 전도성 물질이 발견되지 않았기 때문에 일반적으로 고성능 SOFC 양극을 적용하고 있으며, 950 C 이하 온도에서 C의 산화에 의한 상 안정성 등이 문제가 존재함에도 불구하고 PCFC 전극으로 높은 성능이 보고 35-37) 되고 있는 BSCF를 양극물질로 사용하였다. BSCF와 BCZY의 경우 고온에서 반응하여 이차상을 생성한다는 보고가 있기 때문에 상대적으로 낮은 온도에서 양극 열 처리가 이루어졌으며, BSCF의 높은 열팽창 계수를 고려 하여 5 : 5 부피 비의 양극기능층을 추가하였다. Fig. 5. Crss sectin SEM micrgraph f the BCZY3 Cell (after test). Fig. 6. Vltage and pwer density curves f the BCZY3 single cell. 2 650 C에서 peak pwder density (PPD)는 370 (mw/cm )이 얻어졌으며, 상대적으로 큰 전극(10 10 mm) 면적과 다 공성 복합 전극의 미세구조가 최적화되지 않았음을 고려 한다면 추후 대면적화 및 추가적인 성능 향상이 이루어 제51권 제4호(2014)
276 안혁순 신동욱 최성민 이종호 손지원 김병국 제해준 이해원 윤경중 Table 3. Open-circuit Vltage (OCV) and Peak Pwer Density (PPD) f the BCZY3 Cell Temperature ( C) OCV (Vlts) PPD (mw/cm 2 ) 650 1.0517 370 600 1.094 293 550 1.1331 199 질수있을것으로기대된다. Table 3 는셀측정결과를정리해놓은표이다. 4. 결론 화학적안정성과높은수소이온전도도를모두만족하는 BCZY 조성을도출하기위하여고상합성법을통해 BaCe 0.85-x Zr x Y 0.15 O 3-δ (x = 0.1, 0.3, 0.5, 0.7) 를합성하였다. 이들조성은모두단일상을갖고 Zr 양이증가함에따라여러특성이 BZY 에가까워지는결과를보였다. 화학적안정성및전도도결과를기반으로 PCFC 의전해질로 BaCe 0.55 Zr 0.3 Y 0.15 O 3-δ (BCZY3) 조성을선택하였으며동시소결법 (c-firing) 을이용하여음극지지형으로셀을제작하였다. 제작된셀은 20 20 mm 크기에전극면적은 10 10 mm 이었으며 Ba 0.5 Sr 0.5 C 0.8 Fe 0.2 O 3-δ (BSCF) 를양극물질로사용하여우수한전기화학적성능을확인하였다. Acknwledgment 본연구는한국과학기술연구원기관고유사업과미래창조과학부기반형융합연구사업 (NRF-2011-0019297) 의일환으로수행되었으며이에감사드립니다. REFERENCES 1. A. B. Stambuli and E. Traversa, Slid Oxide Fuel Cells (SOFCs) a Review f an Envirnmentally Clean and Efficient Surce f Energy, Renewable Sustainable Energy Rev., 6 [5] 433-55 (2002). 2. S. M. Haile, Fuel Cell Materials and Cmpnents, Acta Mater., 51 [19] 5981-6000 (2003). 3. H. Iwahara, Y. Asakura, K. katahira, and M. Tanaka, Prspect f Hydrgen Technlgy Using Prtn-cnducting Ceramics, Slid State Inics, 168 [3-4] 299-310 (2004). 4. K. D. Kreuer, Aspects f the Frmatin and Mbility f Prtnic Charge Carriers and the Stability f Pervskitetype Oxides, Slid State Inics, 125 [1-4] 285-302 (1999). 5. H. Iwahara, T. Yajima, T. Hibin, K. Ozaki, and H. Suzuki, Prtnic Cnductin in Calcium, Strntium and Barium Zircnates, Slid State Inics, 61 [1-3] 65-69 (1993). 6. H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, Prtn Cnducting in Sintered Oxides and Its Applicatin t Steam Electrlysis fr Hydrgen Prductin, Slid State Inics, 3-4 359-63 (1981). 7. H. Iwahara, H. Uchida, K. On, and K. Ogaki, Prtn Cnductin in Sintered Oxides Based n BaCeO 3, J. Electrchem. Sc., 135 [2] 529-33 (1988). 8. K. D. Kreuer, Fast Prtn Transprt in Slids, J. Ml. Struct., 177 265-76 (1988). 9. N. Bnans, Oxide-based Prtnic Cnductrs: Pint Defects and Transprt Prperties, Slid State Inics, 145 [1-4] 265-74 (2001). 10. F. Giannici, A. Lng, K. D. Kreuer, A. Balerna, and A. Martrana, Dpants and Defects: Lcal Structure and Dynamics in Barium Cerates and Zircnates, Slid State Inics, 181 [3-4] 122-25 (2010). 11. A. Braun, A. Ovalle, V. Pmjakushin, A. Cervellin, and S. Erat, Yttrium and Hydrgen Superstructure and Crrelatin f Lattice Expansin and Prtn Cnductivity in the BaZr 0.9 Y 0.1 O 2.95 Prtn Cnductr, Appl. Phys. Lett., 95 224103 (2009). 12. N. Zakwsky, S. Williamsn, and J. T. S. Irvine, Elabratin f CO 2 Tlerance Limits f BaCe 0.9 Y 0.1 O 3-δ Electrlytes fr Fuel Cells and Other Applicatin, Slid State Inics, 176 3019-26 (2005). 13. C. W. Tanner and A. V. Virkar, Instability f BaCeO 3 in H 2 O-cntaining Atmspheres, J. Electrchem. Sc., 143 [4] 1386-89 (1996). 14. S. V. Bhide and A. V. Virkar, Stability f BaCeO 3 -based Prtn Cnductrs in Water-cntaining Atmspheres, J. Electrchem. Sc., 146 [6] 2038-44 (1999). 15. P. Babil, T. Uda, and S. M. Haile, Prcessing f Yttriumdped Barium Zircnate fr High Prtn Cnductivity," J. Mater. Res., 22 [5] 1322-30 (2007). 16. K. H. Ryu and S. M. Haile, Chemical Stability and Prtn Cnductivity f Dped BaCeO 3 -BaZrO 3 Slid Slutins, Slid State Inics, 125 355-67 (1999). 17. S. Wienstrer and H.-D. Wiemhfer, Investigatin f the Influence f Zircnium Substitutin n the Prperties f Nedymium-dped Barium Cerates, Slid State Inics, 101-103 1113-17 (1997). 18. Z. Zhng, Stability and Cnductivity Study f the BaCe 0.9-x Zr x Y 0.1 O 2.95 Systems, Slid State Inics, 178 [3-4] 213-20 (2007). 19. A. K. Azad and J. T. S. Irvine, Synthesis, Chemical Stability and Prtn Cnductivity f the Pervksites Ba(Ce, Zr) 1-x Sc x O 3-δ, Slid State Inics, 178 635-40 (2007). 20. E. Fabbri, A. D Epifani, E. D. Bartlme, S. Licccia, and E. Traversa, Tailring the Chemical Stability f Ba (Ce 0.8 x Zr x )Y 0.2 O 3 δ Prtnic Cnductrs fr Intermediate Temperature Slid Oxide Fuel Cells (IT-SOFCs), Slid State Inics, 179 558-64(2008). 21. Y. Gu, Y. Lin, R. Ran, and Z. sha, Zircnium Dping Effect n the Perfrmance f Prtn-cnducting BaZr y Ce 0.8 y Y 0.2 O 3 δ (0.0 y 0.8) fr Fuel Cell Applicatins, J. Pwer Surces, 193 [2] 400-07 (2009). 22. S. Ricte, N. Bnans, and G. Cabche, Water Vapur Slubility and Cnductivity Study f the Prtn Cnductr BaCe (0.9 x) Zr x Y 0.1 O (3 δ), Slid State Inics, 180 [14-16] 990-97 (2009) 한국세라믹학회지
BaCeO 3 -BaZrO 3 고용체 (BCZY) 기반프로톤세라믹연료전지 (PCFC) 용고성능전해질개발 277 23. S. Ricte, N. Bnans, M. C. M. de Lucas, and G. Cabche, Structural and Cnductivity Study f the Prtn Cnductr BaCe (0.9 x) Zr x Y 0.1 O (3 δ) at Intermediate Temperatures, J. Pwer Surces, 193 [1] 189-93 (2009). 24. K. Katahira, Y. Khchi, T. Shimura, and H. Iwahara, Prtnic Cnductin in Zr-substituted BaCeO 3, Slid State Inics, 138 [1-2] 91-98 (2000). 25. N. Narendar, G. C. Mather, P. A. N. Dias, and D. P. Fagg, The Imprtance f Phase Purity in Ni BaZr 0.85 Y 0.15 O 3-δ Cermet Andes nvelnitrate-free Cmbustin Ruteand Electrchemical Study, RSC Adv., 3 859-69 (2013). 26. Y. Gu, R. Ran, Z. Sha, and S. Liu, Effect f Ba Nnstichimetry Nnstichimetry n the Phase Structure, Sintering, Electrical Cnductivity and Phase Stability f Ba 1±x Ce 0.4 Zr 0.4 Y 0.2 O 3-δ (0 x 0.20) Prtn Cnductrs, Int. J. Hydrgen Energy, 36 [14] 8450-60 (2011). 27. A. Magrez and T. Schber, Preparatin, Sintering, and Water Incrpratin f Prtn Cnducting Ba 0.99 Zr 0.8 Y 0.2 O 3-δ : Cmparisn between Three Different Synthesis Techniques, Slid State Inics, 175 [1-4] 585-88 (2004). 28. D. Han, K. Kishida, K. Shinda, H. Inui, and T. Uda, A Cmprehensive Understanding f Structure and Site Occupancy f Y in Y-dped BaZrO 3, J. Mater. Chem. A, 1 3027-33 (2013). 29. C. Zu, S. Zha, M. Liu, M. Hatan, and M. Uchiyama, Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3 δ as an Electrlyte fr Lw-temperature Slid-xide Fuel Cells, Adv. Mater., 18 [24] 3318-20 (2006). 30. S. V. Bhide and A. V. Virkar, Stability f AB 1/2B 1/2 O 3 - Type Mixed Pervskite Prtn Cnductrs, J. Electrchem. Sc., 146 [12] 4386-92 (1999). 31. R. D. Shannn, Revised Effective Inic Radii and Systematic Studies f Interatmic Distances in Halides and Chalcgenides, Acta. Cryst., 32 751-67 (1976). 32. C.-S. Tu, R. R. Chien, V. H. Schmidt, S.-C. Lee, C.-C. Huang, and C.-L. Tsai, Thermal Stability f Ba(Zr 0.8 x Ce x Y 0.2 )O 2.9 Ceramicsin Carbn Dixide, J. Appl. Phys., 105 [10] 103504 (2009). 33. L. Bi, E. Fabbri, Z. Sun, and E. Traversa, Sinteractive Andic Pwders Imprve Densificatin and Electrchemical Prperties f BaZr 0.8 Y 0.2 O 3-δ Electrlyte Films fr Andesupprted Slid Oxide Fuel Cells, Energy Envirn. Sci., 4 1352-57 (2011). 34. Y. Y and N. Lim, Perfrmance and Stability f Prtn Cnducting Slid Oxide Fuel Cells Based n Yttrium-dped Barium Cerate-zircnate Thin-film Electrlyte, J. Pwer Surces, 229 48-57 (2013). 35. Z. Sha and S. M. Haile, A High-perfrmance Cathde fr the Next Generatin f Slid-xide Fuel Cells, Nature, 431 [9] 170-73 (2004). 36. K. Efimv, Q. Xu, and A. Feldhff, Transmissin Electrn Micrscpy Study f Ba 0.5 Sr 0.5 C 0.8 Fe 0.2 O 3-δ Pervskite Decmpsitin at Intermediate Temperatures, Chem. Mater., 22 [21] 5866-75 (2010). 37. Y. Lin, R. Ran, Y. Zheng, Z. Sha, W. Jin, N. Xu, and J. Ahn, Evaluatin f Ba 0.5 Sr 0.5 C 0.8 Fe 0.2 O 3-δ as a Ptential Cathde fr an Ande-supprted Prtn-cnducting Slid-xide Fuel Cell, J. Pwer Surces, 180 15-22 (2008). 제 51 권제 4 호 (2014)