[ ] 1번 김대종.fm

Similar documents
29.fm

36.fm

DBPIA-NURIMEDIA

< D B9DABBF3C8AF29BABCB5E52E666D>

95.fm

( )-121.fm

7.fm

18.fm

46.fm

6.fm

17(1)-06.fm

( )43.fm

103.fm

31.fm

( )-100.fm

( )-103.fm

10.fm

17.fm

76.fm

( )-47.fm

45.fm

116.fm

132.fm

139.fm

( )★56.fm

( )82(박상환).fm

( )-95.fm

21.fm

(154번 김사라은경).fm

129.fm

16(5)-02(57).fm

( )80(배흥택).fm

(1)-01(정용식).fm

( )78(이기성).fm

( )-129.fm

58.fm

108.fm

[13] 20. 이은주.fm

( )67(홍성현).fm

( )-93.fm

88.fm

12.077~081(A12_이종국).fm

( )-30.fm

( )-70.fm

106.fm

17.fm

115.fm

( )-41.fm

78.fm

142.fm

( )-80.fm

KAERIAR hwp

85.fm

( )-103.fm

48.fm

( )-86.fm

35.fm

( )-119.fm

( )-106.fm

( )-40.fm

17.fm

( )-106.fm

61.fm

(164번 김도완).fm

04.fm

49.fm

1.fm

117.fm

44(1)-01(이기안).fm

( )-97.fm

( )-84.fm

한 fm

45.fm

97.fm

3.fm

58.fm

( )-74.fm

03-43(2)-10(김명진).fm

( )57.fm

44.fm

22.fm

11.fm

fm

( )47.fm

( )34.fm

국8411.fm

17(1)-05.fm

( )42.fm

65.fm

fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

50.fm

( )-112.fm

( )48.fm

( )-67.fm

(210).fm

43(5)-11.fm

51.fm

<4D F736F F F696E74202D2035BBF3C6F2C7FC5FBCF8BCF6B9B0C1FA2E BC8A3C8AF20B8F0B5E55D>

(153번 김철영).fm

Transcription:

Jurnal f the Krean Ceramic Sciety Vl. 50, N. 1, pp. 37~42, 2013. http://dx.di.rg/10.4191/kcers.2013.50.1.37 Effect f Depsitin Temperature n Micrstructure and Hardness f ZrC Cating Layers f TRISO-Cated Particles Fabricated by the FBCVD Methd Myung-Jin K*, ***, Daejng Kim*,, Wen-Ju Kim*, Mn Sung Ch**, Sn Gil Yn***, and Ji Yen Park* *Nuclear Materials Divisin, Krea Atmic Energy Research Institute, Daejen 305-353, Krea **HTGR Fuel Technlgy Develpment Divisin, Krea Atmic Energy Research Institute, Daejen 305-353, Krea ***Department f Materials Science and Engineering, Chungnam Natinal University, Daejen 305-764, Krea (Received Nvember 1, 2012; Revised Nvember 26, 2012; Accepted Nvember 27, 2012) 유동층화학기상증착법으로제조된 TRISO 피복입자의 ZrC 층미세구조와경도에미치는증착온도의영향 고명진 *, *** 김대종 *, 김원주 * 조문성 ** 윤순길 *** 박지연 * * 한국원자력연구원원자력재료개발부 ** 한국원자력연구원차세대핵연료개발부 *** 충남대학교재료공학과 (2012 년 11 월 1 일접수 ; 2012 년 11 월 26 일수정 ; 2012 년 11 월 27 일채택 ) ABSTRACT Tristructural-istrpic (TRISO)-cated particles were fabricated by a fluidized-bed chemical vapr depsitin (FBCVD) methd fr use in a very high temperature gas-cled reactr (VHTR). ZrC as a cnstituent layer f TRISO cating layers was depsited by a chlride prcess using ZrCl 4 and CH 4 surce gases in a temperature range f 1400 C and 1550 C. The change in the micrstructure f ZrC depending n the depsitin temperature and its effect n the hardness were evaluated. As the depsitin temperature increased t 1500 C, the grain size f the ZrC increased and the hardness f the ZrC decreased accrding t the Hall-Petch relatinship. Hwever, at 1550 C, the ZrC layer was highly nn-stichimetric and carbn-rich and did nt bey the Hall-Petch relatinship in spite f the decrease f the grain size. A cnsiderable amunt f pyrlytic carbn at the grain bundaries f the ZrC as well as carse granular pyrlytic carbn were lcally distributed in the ZrC layer depsited at 1550 C. Therefre, the hardness decreased largely due t the frmatin f a large amunt f pyrlytic carbn in the ZrC layer. Key wrds : TRISO cating, Zircnium carbide, Fluidized-bed chemical vapr depsitin 1. 서론 제 4 세대원자로중의하나인초고온가스냉각로 (very high temperature gas-cled reactr, VHTR) 에사용되는 TRISO 피복입자핵연료 (tristructural-istrpic-cated particle fuel) 는약 0.5 mm 직경의구형 UO 2 입자에저밀도열분해탄소층 (buffer PyC), 내부고밀도열분해탄소층 (IPyC), 탄화규소층 (SiC), 그리고외부고밀도열분해탄소층 (OPyC) 의 4 개의층이코팅된구조를이루고있다. 이중 SiC 층은내열성이우수하며, 강한공유결합으로인하여고온강도및경도가높고, 낮은열팽창계수, 양호한열전 Crrespnding authr : Daejng Kim E-mail : dkim@kaeri.re.kr Tel : +82-42-868-4559 Fax : +82-42-862-8549 도도, 우수한내산화성을가지기때문에고온구조재료로써뛰어난특성을가진다. 따라서, SiC 층은고온에서 TRISO 피복입자핵연료의구조건전성을유지시켜주며, 기체및고체상의핵분열생성물을담지하는역할을하게된다. 1-4) 그러나, CVD 방법에의해증착되는 β-sic 는 1800 C 이상의온도에서 α-sic 로상변화에의해피복층의손상이시작됨으로써냉각재상실사고시에 TRISO 피복입자핵연료의안전성에잠재적문제점이될수있다. 또한 239 Pu 로부터생성되는핵분열생성물인 Pd 와반응하여 Pd 2 Si 가형성됨으로써 SiC 층에부식이발생하며, 고온에서핵분열생성물인 137 Cs 의고온포획력이떨어지는단점이있다. 5) 따라서 SiC 층을대신하여고온안정성이보다우수하며, 핵분열생성물과의반응성이낮은탄화지르코늄 (ZrC) 이대체피복층으로제안되고있다. ZrC 는 2850 C 까 37

38 고명진 김대종 김원주 조문성 윤순길 박지연 지상변화가일어나지않기때문에 SiC 에비해고온안정성이우수하여핵연료의허용최대온도가더높아질수있어원자로의안전성을향상시킬수있다. 아울러 UO 2 의핵분열로인해방출되는산소와반응하므로산소포획자구실을하여핵연료내의압력증가를방지할수있으며, ZrC 층내에서핵분열생성물인 137 Cs 등의고온확산속도가매우낮기때문에, 핵분열생성물의담지능력이매우우수하다. 또한 Pd 에의한부식저항성이우수하며 2400 C 에서도피복입자의파손이일어나지않는매우우수한열적안정성을가지는것으로보고된바있다. 6-8) 그러나, ZrC 의경우열역학적으로순수한 ZrC 보다는 ZrC + C 가생성되기쉬운물질로서, CH 4 등의탄화수소계를원료물질로사용하는 CVD 공정에서는탄화수소의고온열분해에의해 ZrC 결정립계에유리탄소 (free carbn) 상이쉽게형성될수있다. 이러한유리탄소는 ZrC 층의중성자조사저항성, 고온기계적특성, 핵분열생성물의담지능력등을감소시키는요인으로서, 핵연료의건전성에영향을미칠수있다. 9) 따라서본연구에서는 TRISO 피복입자의 SiC 피복층을 ZrC 로대체하기위한연구를수행하였으며, ZrC 층의건전성에영향을미칠수있는미세구조, 화학양론비, 입도등을분석하고, 온도에따른미세구조변화및이에따른경도변화를살펴보았다. 2. 실험방법 UO 2 핵연료입자의모의입자로서 500 ± 35 µm 의직경을갖는 ZrO 2 입자를이용하여유동층화학기상증착법 (fluidized-bed chemical vapr depsitin, FBCVD) 에의해 TRISO 피복입자를제조하였으며, 유동층화학기상증착장비의모식도를 Fig. 1 에나타내었다. 증착온도까지 10 C/min 의속도로승온하였으며증착온도는반응기옆면에장착되어있는열방사온도계 (pyrmeter) 를이용하여측정, 조절하였다. 증착온도에도달하였을때유동화가스로서 2000 cm 3 /min 의 Ar 기체를흘리는상태에서 ZrO 2 입자를반응기의위쪽부분에서장입하였다. ZrO 2 입자의장입량은 14g 으로고정하였다. 구형의 ZrO 2 입자에균일한피복층을형성하기위해서는반응기체및유동화기체에의해입자가정상유동상태를유지하여야한다. 이를위해각각의피복층은전체유량이 1900-4000 cm 3 /min 인조건으로 ZrO 2 입자가정상유동하고있는상태에서 buffer PyC/IPyC/ZrC/OPyC 층을연속적으로증착하였다. Buffer PyC 층은 Ar 과 C 2 H 2 의혼합기체를사용하여 1350 C 에서증착하였으며 IPyC 및 OPyC 층은 Ar, C 2 H 2 및 C 3 H 6 의혼합기체를사용하여 1300 C 에서증착하였다. ZrC 층의증착을위해 Zr 의원료물질로는 ZrCl 4 분말 (Sigma-Aldrich, > 99.9%) 35 g 을 310 C 로유지되는승화기에장입한다음, Fig. 1. A schematic f the FBCVD system fr ZrC-TRISO cated particles. 341 cm 3 /min 의유량을갖는 Ar 환경에서승화시켰으며, C 의원료기체는 CH 4 를사용하였다. 승화기내부의압력이 760 trr 로일정하게유지되도록 thrttle 밸브를이용하여유량을조절하며 ZrCl 4 증기압을유지하였으며, 승화된 ZrCl 4 기체는혼합기에서 H 2 와 CH 4 에서혼합된후반응로로유입되었다. 실험에사용된입력기체비 (input gas rati, α =(H 2 + Ar)/(ZrCl 4 +CH 4 )) 는 25 로고정하였으며, 희석기체비 (dilutin gas rati, r D = Ar/(Ar + H 2 )) 는 0.5 로유지되었다. 증착온도에따른 ZrC 층의미세구조및경도변화를관찰하기위해증착온도를 1400-1550 C 까지 50 C 간격으로변화시키며 ZrC 층의증착을수행하였다. TRISO 입자에증착된 ZrC 층의 X- 선회절분석 (X-ray diffractin, XRD) 및나노인덴테이션측정을위해최외곽층인 OPyC 층을증착시키지않은피복입자를이용하였다. 나노인덴테이션측정을위한 TRISO 입자샘플은약 30 µm 두께로 ZrC 층이증착되어있으며, TRISO 입자를마운팅한후연마하여 ZrC 층의단면부의중심을약 10 회측정하여평균값을취했다. 최대변위량을 500 nm 로설정하여변위제어를통해경도 (hardness) 및영율 (elastic mdulus) 을측정하였으며, 이때최대하중은약 20-80 mn 으로나타났다. ZrC 피복층의화학양론분석은오제이전자분광분석기 (auger electrn spectrscpy, AES) 를이용하여행하였다. 이를위해 Zr : C (at%) = 50 : 50 의조성비를가지는표준 ZrC (LTS Research Labratries, Inc., USA) 시편을이용하여 AES 의 Zr 와 C 의수치를교정한후, ZrC 층의단면중심부에서 Zr 와 C 함량을정량적으로분석하였다. 그리고 ZrC 층의미세조직및결정방위를분석하기위해투과전자현미경 (transmissin electrn micrscpy, TEM) 과후방산란전자회절분석기 (electrn backscatter diffractin, EBSD) 를이용하였다. 한국세라믹학회지

유동층 화학기상증착법으로 제조된 TRISO 피복입자의 ZrC 층 미세구조와 경도에 미치는 증착온도의 영향 3. 결과 및 고찰 유동층 화학기상증착법을 이용하여 약 500 µm 직경의 ZrO2 미세구에 buffer PyC, IPyC, ZrC, OPyC의 4개 층을 연속적으로 코팅하였다. Fig. 2는 TRISO 피복입자의 단 면 미세구조를 나타낸 것이다. 저밀도의 buffer PyC 층은 약 95 µm, 고밀도의 IPyC 층과 OPyC 층는 약 33 µm, 28 µm의 두께로 코팅이 된 것을 볼 수 있다. ZrC 층은 1500C에서 240분간 증착시킨 경우 두께는 약 32 µm 였 으며, OPyC 층과 맞닿는 ZrC 층 표면은 dme 형태의 거 친 구조를 띄고 있다. Fig. 3은 ZrC 피복층의 증착온도에 따른 증착률의 변화를 Arrhenius plt으로 나타낸 것이다. 1400-1550C의 온도에서 ZrC를 증착시켰을 때, ZrC 층 의 증착률은 온도에 따라 증가하였으며 Arrhenius plt에 서 계산된 활성화 에너지는 약 4.23 kcal/ml로 나타났다. 이 를 통해 본 실험에서 수행한 온도 구간에서 ZrC 피복층 의 증착속도를 지배하는 율속반응은 물질전달 (mass transprt) 기구인 것으로 판단할 수 있다.10) 증착된 ZrC 층의 결정구조 및 결정방위를 XRD와 EBSD를 이용하여 분석하였다. Fig. 4는 ZrC 증착온도 변 화에 따른 ZrC 피복층의 XRD 분석결과를 보여 주고 있 다. 1400-1550C의 온도에서 증착된 ZrC 층은 ZrC의 회 절 피크만 관찰 되었으며, 증착압력을 대기압으로 유지한 39 본 실험조건에서는, 낮은 증착압력에서 관찰되는 ZrC 결 11) 정의 이방성은 나타나지 않았다. 또한 Fig. 5의 EBSD 분석결과에서 볼 수 있듯이, ZrC는 증착온도와 상관없이 우선성장방위를 가지지 않는 무배향성 (randm rientatin) 결정 조직을 가지는 것으로 나타나 XRD 분석결과와 일 치하는 결과를 보였다. 화학기상증착법에 의해 증착된 ZrC는 Zr : C = 1 : 1의 화 학양론비를 갖기 어려운 물질로서 XRD 결과만으로는 다 른 상의 생성 여부를 정확히 판단하기 어렵다. 따라서 증 착된 ZrC 층의 화학양론비를 평가하기 위하여 AES 분석 을 실시 하였다. Table 1은 1400-1550C 온도에서 증착 된 ZrC 층의 C/Zr 분율을 나타내고 있다. AES 분석결과 Fig. 3. Depsitin rate f the ZrC layer as a functin f the depsitin temperature. Fig. 4. XRD patterns fr the ZrC layers depsited at 1400 1550 C. Table 1. AES Results f C/Zr Rati fr ZrC Layer Depsited at Different Temperatures Fig. 2. Typical micrstructure f the ZrC-TRISO cated particle fabricated by the FBCVD methd. Depsitin temperature ( C) 1400 1450 1500 1550 C/Zr Rati 1.04 0.98 1.01 1.24 제50권 제1호(2013)

고명진 김대종 김원주 조문성 윤순길 박지연 40 Fig. 6. TEM images f ZrC layers depsited at (a) 1400C, (b) 1450 C, (c) 1500 C, and (d) 1550 C (ZrC: dark regin, free carbn: bright regin in images). Fig. 5. EBSD images and the crrespnding inverse ple figures f ZrC layers depsited at (a) 1450 C, (b) 1500 C, and (c) 1550 C. C/Zr 비는 1400-1500 C 온도 구간에서 0.98-1.04 값을 나타내고 있으며, 우수한 화학양론비를 가지는 ZrC가 형 성되어 있음을 알 수 있었다. 그러나, 1550C에서는 C/Zr 비가 1.24로 상대적으로 높게 측정이 되었으며, ZrC 층 내에 과량의 탄소가 존재하는 비화학양론의 ZrC가 형성 되었음을 예측할 수 있다. Fig. 6은 증착온도에 따른 ZrC 층의 TEM 미세구조를 보여 주고 있다. Fig. 5(a)-(c)에서 볼 수 있듯이, 1400 1500C 온도 구간에서는 온도가 증가 할수록 결정립의 크 기가 증가하는 것을 볼 수 있다. 또한 ZrC 결정립계에 미 량의 유리 탄소가 존재하고 있음을 알 수 있다. 반면, 1550C에서 증착된 ZrC의 경우 1500C에서 증착된 ZrC 보다 오히려 결정립 크기가 감소하였으며, AES 결과에서 유추할 수 있듯이 입계에 존재하는 유리 탄소의 양이 증 가하였고 크기가 큰 유리 탄소 덩어리도 관찰되고 있다. 1550C에서 ZrC 결정립 크기의 감소는 이러한 유리 탄소 의 과다 생성에 의해 ZrC의 입자 성장이 제한되었기 때 문인 것으로 해석할 수 있다. 증착된 ZrC 피복층의 화학양론비와 결정립의 크기 변 한국세라믹학회지 Fig. 7. Variatin f nanindentatin hardness and elastic mdulus f ZrC as a functin f depsitin temperature. 화는 ZrC 피복층의 기계적 특성에 영향을 미칠 것으로 판단된다. Fig. 7은 나노인덴테이션에 의해 측정된 ZrC의 경도 및 탄성계수 변화를 보여 주고 있다. 증착된 ZrC 층 의 경도와 탄성계수는 온도가 증가함에 따라 감소하고 있 다. 특히, 1550C에서 급격한 감소를 보이고 있으며, 이는 ZrC 층에 형성되어 있는 많은 양의 유리 탄소에 의한 것 으로 해석할 수 있다. 결정 크기와 경도와의 관계는 아래 의 Hall-Petch 관계식을 통해서 알 수 있다.12) 1/2 H = H0 + KHd 여기서, H는 경도, d는 결정립의 크기를 나타나며, H0 와 KH는 상수 값이다. 이 관계식에 따른 ZrC 결정립의 크기와 경도와의 관계를 Fig. 8에 나타내었다. 1400 1500C 온도 구간에서는 Hall-Petch 관계식에 의거하여 결 정립 크기가 감소함에 따라 경도가 증가하는 경향을 나 타내고 있다. 그러나, 1550C에서는 ZrC의 경도가 관계식

유동층화학기상증착법으로제조된 TRISO 피복입자의 ZrC 층미세구조와경도에미치는증착온도의영향 41 확산속도증가등의문제점이발생할수있다. 13) 1400-1500 C 에서증착한 ZrC 피복층의경우 AES 분석결과에서는비교적우수한화학양론비를나타내었으나소량의미세한유리탄소가입계에여전히존재하는것으로확인되었다. 따라서, 입력기체비나희석기체비의조절과같은유동층화학기상증착공정최적화를통해화학정량비를갖는순수한 ZrC 피복층을제조하기위한추가연구가필요한것으로판단된다. 4. 결론 Fig. 8. Relatinship between hardness and grain size fr ZrC accrding t Hall-Petch relatin, H = H 0 +K H d -1/2. TRISO 피복입자의 SiC 피복층을대체할수있는차세대피복입자핵연료제조를위해, ZrCl 4 와 CH 4 을원료물질로사용한유동층화학기상증착법을이용하여 ZrC 피복층을제조하는연구를수행하였다. 1400-1500 C 증착온도에서화학정량비에근접하는 ZrC 가형성된것으로관찰되었으나, 미량의유리탄소가 ZrC 의결정립계에형성되었다. 1550 C 의증착온도에서는유리탄소가과량으로존재하는 ZrC 가얻어졌는데, 특히 ZrC 결정립계를따라많은양의유리탄소가관찰되었고, 국부적으로조대한유리탄소가형성되어있음을관찰하였다. ZrC 결정립크기는증착온도가높아짐에따라증가하여 Hall-Petch 관계식에따라경도및탄성계수가감소하였다. 그러나, 1550 C 에서 ZrC 결정립크기는온도증가에도불구하고감소하였으며, ZrC 층에형성되어있는다량의유리탄소에의해경도와탄성계수는관계식을크게벗어나낮은값을나타내었다. Acknwledgment 본연구는교육과학기술부 (MEST) 한국연구재단 (NRF) 의연구지원으로수행되었으며, 이에감사드립니다 (N. 2012M2A8A2011033). Fig. 9. SEM image and the crrespnding AES line prfile f the ZrC layer depsited at 1550 C. 으로부터크게벗어나낮은값을나타내고있으며, 이것은많은양의유리탄소가 ZrC 층내에형성되었기때문이다. 1550 C 에서증착된 ZrC 층에서과량의탄소의존재여부는앞서언급된 TEM 미세구조뿐만아니라 ZrC 층의단면에대한 AES 분석결과를통해서도확연히관찰이되고있다 (Fig. 9). 이에따라 1500 C 에서증착된 ZrC 결정립에비해입자크기가줄어들었음에도불구하고경도는약 30% 가량감소하였다. 이러한유리탄소의존재는 ZrC 층의기계적특성감소와더불어중성자조사에의한결정립계탄소의열화와결정립계를통한 137 Cs, 144 Ce 등의핵분열생성물의 REFERENCES 1. K. Minat and K. Fukuda, Chemical Vapr Depsitin f Silicn Carbide fr Cated Fuel Particles, J. Nucl. Mater., 149 233-46 (1987). 2. S. Kuadri-Mstefa, P. Serp, M. Hemati, and B. Caussat, Silicn Chemical Vapr Depsitin (CVD) n Micrprus Pwders in a Fluidized Bed, Pwder Technl., 120 82-7 (2001). 3. H. Nickel, H. Nabielek, G. Ptt, and A.W. Mehner, Lng Time Experience with the Develpment f HTR Fuel Elements in Germany, Nucl. Eng. Des., 217 141-51 (2002). 4. G. K. Miller, D. A. Petti, D. J. Varacalle Jr., and J. T. Maki, Statistical Apprach and Benchmarking fr Mdeling f Multi-Dimensinal Behavir in Tris-Cated Fuel Particles, J. Nucl. Mater., 317 69-82 (2003). 5. H. Nabielek, W. Schenk, W. Heit, A.-W., Mehner, and D.T. 제 50 권제 1 호 (2013)

42 고명진 김대종 김원주 조문성 윤순길 박지연 Gdin, The Perfrmance f High-Temperature Reactr Fuel Particles at Extreme Temperatures, Nucl. Technl., 84 62-81 (1989). 6. K. Minat, T. Ogawa, K. Sawa, A. Ishikawa, T. Tmita, S. Iida, and H. Sekin, Irradiatin Experiment n ZrC-Cated Fuel Particles fr High-Temperature Gas-Cled Reactrs, Nucl. Technl., 130 272-81 (2000). 7. K. Minat, T. Ogawa, K. Fukuda, H. Nabielek, H. Sekin, Y. Nzawa, and I. Takahashi, Fissin Prduct Release frm ZrC Cated Fuel Particles during Pstirradiatin Heating at 1600 C, J. Nucl. Mater., 224 85-92 (1995). 8. T. Okawa and K. Ikawa, Reactin f Pd with SiC and ZrC, High Temp. Sci., 22 179-93 (1986). 9. C. Liu, B. Liu, Y. Sha, Z. Li, and C. Tang, Preparatin and Characterizatin f Zircnium Carbide Cating n Cated Fuel Particles, J. Am. Ceram. Sc., 90 3690-93 (2007). 10. J.-H. Park, A Study n the Depsitin Prcess and Characterizatin f ZrC by Chemical Vapr Depsitin(in Krean), pp. 88-93, Ph. D. Thesis, Chungnam Natinal University, Deajen, 2009. 11. J. H. Park, C. H. Jung, W. -J Kim, D. J. Kim, and J. Y. Park, Micrstructure and Hardness Changes f the CVD-ZrC Film with Different Depsitin Temperature(in Krean), J. Kr. Ceram. Sc., 45 [9] 567-71 (2008). 12. C.-S. Chen, C.-P. Liu, and C.-Y.A. Tsa, Influence f Grwth Temperature n Micrstructure and Mechanical Prperties f Nancrystalline Zircnium Carbide Films, Thin Slid Films, 479 130-36 (2005). 13. K. Fukuta, K. Ikawa, and K. Iwamt, Fissin Prduct Diffusin in ZrC Cated Fuel Particles, J. Nucl. Mater., 87 367-74 (1979). 한국세라믹학회지