[13] 20. 이은주.fm

Similar documents
46.fm

( )-97.fm

7.fm

88.fm

6.fm

129.fm

( )-86.fm

( )-95.fm

12.077~081(A12_이종국).fm

< D B9DABBF3C8AF29BABCB5E52E666D>

17.fm

10.fm

( )-103.fm

(210).fm

( )78(이기성).fm

( )57.fm

58.fm

( )-41.fm

( )-100.fm

31.fm

45.fm

( )-103.fm

18.fm

139.fm

14.fm

( )-68.fm

( )-93.fm

( )67(홍성현).fm

( )★56.fm

132.fm

85.fm

76.fm

( )-47.fm

35.fm

17(1)-06.fm

( )-70.fm

( )-106.fm

( )-129.fm

65.fm

16(5)-02(57).fm

103.fm

DBPIA-NURIMEDIA

17.fm

22.fm

( )-84.fm

( )-30.fm

( )82(박상환).fm

[01] 6번 정성용.fm

106.fm

( )34.fm

29.fm

KAERIAR hwp

18(3)-06(09).fm

( )42.fm

( )-114.fm

DBPIA-NURIMEDIA

( )-119.fm

47.fm

1.fm

fm

48.fm

78.fm

36.fm

( )-40.fm

( )-112.fm

( )80(배흥택).fm

116.fm

49.fm

( )-124.fm

115.fm

3.fm

[ ] 1번 김대종.fm

97.fm

[03] 79번 정미원.fm

63.fm

( )-74.fm

17(1)-05.fm

16(6)-06(08(77)).fm

(1)-01(정용식).fm

( )-107.fm

( )43.fm

(153번 김철영).fm

( )-121.fm

( )47.fm

( )-66.fm

fm

한 fm

18.fm

( )-59.fm

(154번 김사라은경).fm

61.fm

(181).fm

51.fm

43(5)-11.fm

(206).fm

( )49.fm

<30322D303032B1E8BFB5C1D628C3D6C1BE D E687770>

17.fm

119.fm

exp

Transcription:

Jurnal f the Krean Ceramic Sciety Vl. 50, N. 6, pp. 429~433, 2013. http://dx.di.rg/10.4191/kcers.2013.50.6.429 Fabricatin and Mechanical Prperties f Prus Silicn Carbide Ceramics frm Silicn and Carbn Mixture Jng-Chan Kim, Eun Ju Lee, and Deug-Jng Kim Schl f Advanced Materials Science & Engineering, Sungkyunkwan University, Suwn 440-746, Krea (Received Octber 31, 2013; Revised Nvember 8, 2013; Accepted Nvember 15, 2013) 실리콘과카본을이용한다공질탄화규소의제조와기계적특성 김종찬 이은주 김득중 성균관대학교신소재공학과 (2013 년 10 월 31 일접수 ; 2013 년 11 월 8 일수정 ; 2013 년 11 월 15 일채택 ) ABSTRACT Silicn, carbn, and B 4 C pwders were used as raw materials fr the fabricatin f prus SiC. β-sic was synthesized at 1500 C in an Ar atmsphere frm a silicn and carbn mixture. The synthesized pwders were pressed int disk shapes and then heated at 2100 C. β-sic particles transfrmed t α-sic at ver 1900 C, and rapid grain grwth f α-sic subsequently ccurred and a prus structure with elngated plate-type grains was frmed. The mechanism f this rapid grain grwth is thught t be an evapratincndensatin reactin. The mechanical prperties f the fabricated prus SiC were investigated and discussed. Key wrds: Silicn carbide, Prus ceramic, Phase transfrmatin, Grain grwth 1. 서론 탄화규소는우수한고온특성과내부식성, 내열성, 열충격에강한특성을갖고있어전통적으로고온구조용재료로널리사용되어왔다. 다공성을갖는다공질탄화규소또한자동차디젤분진필터 (Diesel Particulate Filter, DPF), 발전설비용필터, 열교환기용필터등으로사용되고있고경량고온구조재료로도주목받고있는소재이다. 탄화규소는실리콘과카본의공유결합으로인해난소결성을갖는물질이다. 1975 년 Prchazka 의탄화규소소결에대한연구에의해소결조제로보론과카본을첨가하여상대적으로낮은온도인 2100 C 부근에서치밀한소결체를제조하는상압소결법이개발되었다. 1) 이때첨가한붕소와탄소는탄화규소입자내에서의부피확산을촉진시키고, 탄화규소표면에존재하는 SiO 2 와반응하여평형이면각을증가시켜서소결을촉진한다고알려졌다. 이후에여러연구를통해탄화규소의소결조제로 Al, AlN, Al 2 O 3, B 4 C 등이연구되어왔다. 다공질탄화규소의경우다양한방법으로만들어지게되는데치밀화가이루어지 Crrespnding authr : Deug-Jng Kim E-mail : kimdj@skku.edu Tel : +82-31-290-7394 Fax : +82-31-290-7394 기직전의온도로떨어트려서소결하는방법 2), 반응소결법을이용하여제조하는방법 3), 폴리머와같은기공전구체를첨가하여고온에서이를분해하는방법 4), 폴리우레탄폼을제조한후에탄화규소슬러리를코팅한후폴리우레탄폼을제거하여다공체를제작하는방법 5) 등이사용되고있다. 이방법들은공통적으로충분하지않은강도와균일하지않은결합이라는문제점을지니고있다. 따라서, 본연구에서는상용 β-sic 분말을출발원료로사용하지않고탁월한원가절감효과를기대할수있는실리콘과카본분말을합성하여만들어진 β-sic 분말을이용하여기존재결정화법에의해제조된다공질탄화규소에비하여향상된물성과가격경쟁력을동시에갖춘다공질탄화규소의제조공정연구를진행하였다. 카본의함량과입도변화를통해다공질탄화규소의기계적특성을연구하고, SEM 을이용하여미세구조를확인하고 XRD 를통해서상의변화를분석하고고찰하였다. 2. 실험방법 사용한출발분말은실리콘분말 (5 μm, Saint-Gbain, USA) 과순수카본분말 (5 μm, 99.9%, High Purity Chemicals, Japan) 을사용하였고소결조제로 B 4 C(< 99%, High Purity Chemicals, Japan) 를 1wt% 첨가하였다. 또한성형 429

김종찬 이은주 김득중 430 의 용이함을 위해 강남화성의 페놀수지(Phenlic resin)를 카본 소스(surce)로 사용하였다. 본 연구에서 사용된 페 놀수지는 800 ~ 1000C 범위에서 총 중량의 약 50%가 감 소하면서 카본이 잔류하게 되는 것으로 보고되고 있다. Fig. 1은 실리콘과 카본 분말의 SEM 사진을 나타낸 것 이다. 실리콘과 카본 분말을 몰 비(Si : C)로 각각 1 : 0.9 (이하 S1), 1 : 1(이하 S2)의 조성별로 혼합하고 B4C를 1 wt% 의 소결 조제로 첨가한 후 메탄올을 용매로 하여 습식 혼 합하였다. 60C에서 건조 후 100 μm 체로 체가름하여 혼 합 분말을 완성하였다. 이렇게 조제된 혼합 분말은 1500C 에서 진공상태로 1시간 동안 열처리하여 β-sic 분말을 합 성 하였다. 합성된 분말은 PSA(Particle Size Analyzer)를 사용하여 입도분석을 행하였다. 혼합된 각각의 조성별 분말, S1, S2를 250 MPa의 압력 으로 일축가압성형 하였다. 소결은 흑연 발열체를 사용한 로를 이용하여 1500 C까지 진공분위기를 유지한 후 1500 C 에서 Ar 가스로 전환하고 승온하여 2100 C에서 소결하였 다. 승온속도는 분당 10C로 유지하였으며 Ar의 유량은 2 L/min을 유지하였고 소결 이후에는 노냉하였다. 열처리가 끝난 각 시편의 수축률과 밀도를 구하기 위 해 질량은 0.001 g까지, 길이변화는 0.01 mm까지 측정하 였고 아르키메데스법을 이용하여 밀도를 측정하였다. 최 종시편의 상분석과 β-α로의 상변태 정도를 알아보기 위 하여 XRD를 이용하여 분석하였고, SEM(S-2150, HITACHI, Japan)을 이용하여 소결이 끝난 시편의 미세조직을 관찰 하였다. 시편의 강도는 4점 굽힘 강도를 이용하여 측정하 였다. 굽힘 강도 시편은 다이아몬드 절단기를 이용하여 두께 3 mm, 폭 4 mm 및 길이 40 mm 정도로 가공한 후 다이아몬드 휠을 사용하여 모서리 가공을 하였다. 만들어 진 시편은 지지점간 거리 30/10 mm, 크로스헤드 속도 0.5 mm/min의 조건으로 상온에서 파괴 하중을 구한 뒤 다 음 식에 대입하여 4점 굽힘 강도를 구하였다. 3Fa σf = ---------2bd (1) σf = 굽힘 강도(MPa) F = 파괴 응력(N) a = 지지구 모멘트 암의 길이(10.0 mm) b = 시험편의 폭(mm) d = 측정 하중 방향에 평행한 시험편의 높이(mm) 3. 결과 및 고찰 3.1. 카본 조성에 따른 β-sic의 분말합성 실리콘과 카본의 원료분말로 S1(1 : 0.9), S2(1 : 1)의 조 성으로 1500 C, 진공 분위기에서 합성된 β-sic 분말의 XRD 분석결과를 Fig. 2에서 나타내었다. 대체적으로 S1 한국세라믹학회지 Fig. 1. SEM micrgraphs f (a) silicn and (b) carbn pwders. Fig. 2. XRD patterns f SiC pwders synthesized at 1500 C fr 1 h. 과 S2의 조성 모두 β-sic의 peak를 나타내었다. 이는 실 리콘은 1400 C 부근에서 녹는점을 갖는데, 실리콘이 액상 으로 변하면서 카본과 합성되었기 때문인 것으로 사료된 다.6) 하지만 S2의 경우 약간의 카본 peak을 확인 할 수 있는데, S2의 경우 실리콘과 카본이 1 : 1 비율이기 때문 에 고온에서 실리콘 증발이 야기되어서 미반응 카본이 남 은 것으로 추측된다. 차후 이 문제를 해결하기 위해서는 합성 온도구간을 1500C 보다 낮추거나 합성 분위기를 변 화하는 등의 방법을 통해서 해결할 수 있으리라고 판단된다. S1, S2의 조성으로 합성된 β-sic 분말을 이용하여 250 MPa의 압력으로 일축 가압 성형한 시편을 2100 C에 서 3시간 동안 소결을 진행한 후 밀도와 굽힘 강도를 측 정하였다. 합성과 소결의 공정을 분할하여 실험한 결과 S1, S2의 각각의 소결 후 상대밀도는 약 53.9%, 68.9%로 상대적으로 높은 밀도를 갖는 것으로 확인되었다. 측정상 의 오차를 감안하더라도 합성과 소결을 한 번에 진행한 이전 연구의 단일공정에서의 40% 이하의 밀도 값에 비 해서 20% 이상 높은 상대밀도를 갖는 것으로 나타났다.7) 이는 실리콘과 카본의 합성 구간인 1500 C에서 발생하는 부피팽창이 소결밀도의 저하를 가져온다는 추측과 그것

실리콘과카본을이용한다공질탄화규소의제조와기계적특성 431 Table 1. Flexural Strength and Density f Prus SiC Fabricated at 2100 fr 3 h S1 S2 Relative density (%) 53.9 68.9 Flexural strength (MPa) 42.1 (±8.24) 61.2 (±13.66) Table 2. Particle Size f S1 and S2 Pwders Befre and After Ball Milling Pwder Befre milling (d 50 ) After milling 10 h (d 50 ) S1 53.57 μm 8.77μm S2 53.26 μm 7.91μm Fig. 3. XRD patterns f prus SiC sintered at 2100 C fr 3 h. 을해결하기위해제시되었던합성과소결의분할공정의방안이효과가있었음을보여주는것이다. S1, S2 의합성된 β-sic 분말을이용하여소결후굽힘강도를측정한결과 S1 의경우약 42.1 MPa, S2 는 61.2 MPa 의강도값을갖는것으로확인되었다. 이는상대밀도증가에따른영향으로굽힘강도값이향상된것으로판단되며, 미세구조분석결과상변화를동반한빠른입성장에도불구하고두꺼운판상형네트워크구조를갖기때문인것으로사료된다. Table 1 에는분할공정법을통한 S1, S2 의소결후상대밀도와굽힘강도값을정리하였다. Fig. 3 은 2100 C 에서소결한시편의 XRD 분석결과이다. S1, S2 조성모두주된상은 α-sic 상으로소결중에초기의 β-sic 상은모두 α-sic 으로상전이되었음을알수있었다. Fig. 4. SEM micrgraphs f pwders synthesized at 1500 C fr 1 h under vaccum atmsphere: (a) S1 and (b) S2. 3.2. 분쇄에의한입도변화의영향실리콘과카본을합성하여생성된 β-sic 인 S1, S2 의평균입도를확인하기위해서입도분석을하였다. 평균입도 (d 50 ) 분석결과, Si 3 N 4 볼을이용한합성된 β-sic 분말의밀링전, 후의수치에서큰차이를보였다. Table 2 에합성된 β-sic 분말의볼밀링전, 후의평균입도를나타내었으며 Fig. 4 에는볼밀링전, 후의분말미세구조를나타내었다. 1500 C 에서합성된밀링하기전의 β-sic 분말분포를미세구조로확인한결과고른입자분포를보이지않고덩어리형태로뭉쳐있는것을확인할수있었으며전체적으로 10 μm 이하의크기로예상되는분말의 Fig. 5. SEM micrgraphs f the fracture surface f prus SiC sintered at 2100 C fr 5 h in Ar using (a) S1 and (b) S2 pwders. 형태가관측되었다. Fig. 5 는분쇄효과에따른소결후다공질탄화규소의미세구조를나타낸것이다. 합성후덩어리져서뭉쳐있는 β-sic 의분말은다공질탄화규소제조에있어서비정상입자성장과불균일한입자의형태를나타낼것으로예상 제 50 권제 6 호 (2013)

432 김종찬 이은주 김득중 Fig. 6. Schematic diagram fr the grwth f α-sic elngated grains. 되며판상형네트워크구조의불균일한형태를나타낼것으로예상되었다. 실제로 2100 C 에서 5 시간동안소결하였을때, 볼밀링을하지않은비교적큰입도를갖는 β-sic 분말 (S1, S2) 을이용하여소결하였을경우불균일하고비정상적인입자성장을쉽게확인할수있었다. 반면볼밀링을한수 μm 의평균입도를갖는 β-sic 분말 (S1, S2) 을소결했을경우에는비교적균일한판상형의입성장과네트워크구조를확인할수있었다. 특히 S1 의조성의경우에는미세구조사진에서작은입자의잔류물질이관찰되지않았으며고른입성장의네트워크구조형성과함께약 60% 의상대밀도를갖는것으로나타났다. 하지만 S2 의경우에는 S1 에비해성장된입자의크기도작고미세한작은입자들이남아있었다. S1, S2 의소결후상대밀도를분석한결과밀링으로인하여약간의밀도증가효과는나타나는것으로확인되었다. 3.3. 다공질탄화규소의입성장기구일반적인탄화규소의경우에는통상적으로 1900 C 부터점차적으로 β-sic 가 α-sic 로전환된다고알려져있다. 본실험에서다공질탄화규소는 α-sic 로전환되면서수축을동반하지않고 2100 C 부근에서급격한입성장이일어났다. 고온으로올라가면서 α 상이형성이되기시작하면입자가빠르게성장하기시작되는데, 그이유는 β 상보다는 α 상의 Si, Si 2 C, SiC 2 의증기압이낮기때문에 8) β 상에서는증발이일어나고 α 상에서는응축이일어나는증발 - 응축의과정때문인것으로사료된다. 9-11) 이과정에서카본의존재는증기압을낮추어주고증발 - 응축과정을지연시키는것으로알려져있다. 9) Fig. 5 의다공질탄화규소소결체의 SEM 이미지에서관찰되는비교적작은입자들은분말합성시존재하는잔류카본들이입자성장을방해하였기때문이라고생각된다. 통상적인소결이론에따르면표면물질이동을메카니즘으로하는표면확산및증발 - 응축법 (evapratin-cndensatin) 은치밀화를동반한수축을일으키지않고입성장을한다고알려져있다. 12) 본실험에서다공질탄화규소의입성장메카니즘은증발 - 응축법으로판단되며증기압차로인하여, β-sic 로부터분해된 Si 2 C, SiC 2 물질이 α- SiC 상으로확산되고, 그표면에흡착하게되는기상이동 (Gas phase transprt) 의형태일것으로사료된다. 13,14) Fig. 6 에다공질탄화규소의합성과상변태및입자성장의모식도를나타내었다. 다공질탄화규소의제조를위해서첨가제 ( 소결조제 ) 로 B 4 C 를사용하였는데이경우보론이입계에만머물러있지않고입계내로침투해들어간다는연구결과가보고되고있다. 15) Nviyant 등은 B 4 C 를형성하는 Gibbs free energy 가 β-sic 를형성하는에너지보다더낮기때문에 β-sic 가더불안정한상태로존재하여원자의이동을원활하게하여입성장을촉진하는첨가제역할을한다고보고하였다. 16) 또한 Prchazka 17) 등은카본이탄화규소분말표면에존재하는 SiO 2 를환원하여표면에너지를증가시키고보론은입계에편석되어탄화규소와고용체를형성함으로써입계에너지를낮춘다고주장하였다. 또다른연구에따르면 B 4 C 가 β 상에서 α 상으로상전이와입성장을빠르게촉진시킨다고보고하고있다. 18) 이에따라본실험에서는빠른입성장과상전이를촉진하여수축이일어나지않는판상형네트워크구조의다공질탄화규소가형성되었다고판단된다. 따라서 β-sic 분말에촉매제역할을하는 B 4 C 를첨가하여치밀화를동반하지않는빠른입성장을유도하면증발 - 응축법에의한기상이동으로판상형네트워크구조의다공질탄화규소를제조할수있다. 4. 결론 실리콘과카본의혼합물로부터판상의큰입자로네트워크구조를가지는탄화규소다공체를제조하였다. 1500 C 에서미리합성한 β-sic 분말이미세한입도를가질수 한국세라믹학회지

실리콘과카본을이용한다공질탄화규소의제조와기계적특성 433 있도록밀링공정을거치면고른입성장과함께균일한네트워크구조의탄화규소다공체를얻을수있었다. 밀링효과로인한소결밀도의큰차이는없었지만전체적으로높은소결밀도와향상된굽힘강도값을가졌다. 제조된 SiC 다공체의밀도는 53.9-68.9%, 곡강도값은 42.1-61.2 MPa 의범위를나타내었다. 다공질탄화규소의형성은 β 상과 α 상의증기압차이로인해발생되는기상의 Si 2 C, SiC 2 가이동하는증발 - 응축기구로설명할수있었다. REFERENCES 1. S. Prchazka, The Rle f Brn and Carbn in the Sintering f Silicn Carbide, pp. 171-81 in Special Ceramics, Vl. 6, Ed. by P. Ppper and F. Fiee, British Ceramics Research Assciatin, Stke-n-Trent, 1975. 2. Y. W. Kim and J. G. Lee, Reactive Sintering f SiC (in Krean), J. Kr. Ceram. Sc., 20 [2] 115-22 (1983). 3. S. S. Whang, S. W. Park, H. H. Han, K. S. Han, and C. M. Kim, Mechanical Prperties f Prus Reactin Bnded Silicn Carbide (in Krean), J. Kr. Ceram. Sc., 39 [10] 948-54 (2002). 4. M. Wu, T. Fujiju, and G. L. Messing, Synthesis f Celluar lnrganic Materials by Faming Sl-Gels, J. Nn-Cryst. Slids, 121 407-12 (1990). 5. F. F. Lange and K. T. Miller, Open-Cell, Lw-Density Ceramics Fabricated frm Reticulated Plymer Substrates, Adv. Ceram. Mater., 2 [4] 827-31(1987). 6. L. N. Satapathy, P. D. Ramesh, D. Agrawal, and R. Ry, Micrwave Synthesis f Phase-Pure, Fine Silicn Carbide Pwder, Mater. Res. Bull., 40 [10] 1871-82 (2005). 7. D. H. Lee, J. C. Kim, and D. J. Kim, Prus Silicn Carbide Ceramics frm Silicn and Carbn Mixture, J. Ceram. Prc. Res., 14 [3] 322-26 (2013). 8. S. Sugiyama and M. Tgaya, Phase Relatinship between 3C-and 6H-Silicn Carbide at High Pressure and High Temperature, J. Am. Ceram. Sc., 84 [12] 3013-16 (2001). 9. L. Stbierski and A. Gubernat, Sintering f Silicn Carbide I. Effect f Carbn, Ceram. Int., 29 [3] 287-92 (2003). 10. S. K. Lilv, Thermdynamic Analysis f Phase Transfrmatins at the Dissciative Evapratin f Silicn Carbide Plytypes, Diamnd Relat. Mater., 4 [12] 1331-34 (1995). 11. S. C. Singhal, Thermdynamic Analysis f the High-Temperature Stability f Silicn Nitride and Silicn Carbide, Ceram. Int., 2 [3] 123-30 (1976). 12. S. -J. L. Kang, Sintering Densificatin, Grain Grwth & Micrstructure; Vl. 1, pp. 48-9, Elsevier Butterwrth-Heineman, Oxfrd, 2005. 13. K. Kakimt, B. Ga, T. Shiramm, and S. Nakan, and S. Nishizawa, Thermdynamic Analysis f SiC Plytype Grwth by Physical Vapr Transprt Methd, J. Cryst. Grwth., 324 [1] 78-81 (2011). 14. S. K. Lilv, Study f the Equilibrium Prcesses in the Gas Phase during Silicn Carbide Sublimatin, Mater. Sci. Eng. B., 21 [1] 65-69 (1993). 15. G. H. Wrblewska, E. Nld, and F. Thummer, The Rle f Brn and Carbn Additins n The Micrstructural Develpment f Pressureless Sintered Silicn Carbide, Ceram. Int., 16 [4] 201-09 (1990). 16. S. Prchazka and R. M. Scanlan, Effect f Brn Carbn n the Sintering f SiC, J. Am. Ceram. Sc., 58 [1-2] 72 (1975). 17. Y. A. Vdakv and E. N. Mkhv, Diffusin and Slubility f Impurities in Silicn Carbide, pp. 508-19 in Silicn Carbide, Vl. 3, Ed. by R. C. Marshall, J. W. Faust, and C. E. Ryan, Univ. f Suth Carlina Press, Clumbia.S.C, 1973. 18. P. A. K. -D. Cppi and W. Richarz, Phase Transfrmatin and Grain Grwth in Silicn Carbide Pwders, Int. J. High Technl. Ceram., 2 [2] 99-113 (1986). 제 50 권제 6 호 (2013)